一、rt_system_scheduler_start源码
{
register struct rt_thread *to_thread;
register rt_ubase_t highest_ready_priority;
#if RT_THREAD_PRIORITY_MAX > 32
register rt_ubase_t number;
number = __rt_ffs(rt_thread_ready_priority_group) - 1;
highest_ready_priority = (number << 3) + __rt_ffs(rt_thread_ready_table[number]) - 1;
#else
highest_ready_priority = __rt_ffs(rt_thread_ready_priority_group) - 1;
#endif
/* get switch to thread */
to_thread = rt_list_entry(rt_thread_priority_table[highest_ready_priority].next,
struct rt_thread,
tlist);
rt_current_thread = to_thread;
/* switch to new thread */
rt_hw_context_switch_to((rt_uint32_t)&to_thread->sp);
/* never come back */
}
二、rt_system_scheduler_start函数分析
1、rt_thread_ready_priority_group
typedef unsigned long rt_uint32_t;
rt_uint32_t rt_thread_ready_priority_group;
rt_thread_ready_priority_group
在rt_thread_startup
函数中rt_thread_resume
函数中rt_schedule_insert_thread
函数调用。
rt_thread_ready_priority_group |= thread->number_mask;
thread->number_mask
在rt_thread_startup
函数中设置。
thread->number_mask = 1L << thread->current_priority;
thread->init_priority = priority;
thread->current_priority = thread->init_priority;
priority
有调用rt_thread_create
函数传入的参数。
1、main线程创建
1、priority
设置为RT_MAIN_THREAD_PRIORITY
。
#define RT_THREAD_PRIORITY_MAX 32
#define RT_MAIN_THREAD_PRIORITY (RT_THREAD_PRIORITY_MAX / 3)
2、main
函数设置rt_thread_ready_priority_group
为0x400
。rt_thread_ready_priority_group
变量设置为或运算。
2、idle线程创建
1、priority
设置为RT_THREAD_PRIORITY_MAX - 1
。
2、main
函数设置rt_thread_ready_priority_group
为0x800000400
。
2、__rt_ffs
int __rt_ffs(int value)
{
if (value == 0) return 0;
if (value & 0xff)
return __lowest_bit_bitmap[value & 0xff] + 1;
if (value & 0xff00)
return __lowest_bit_bitmap[(value & 0xff00) >> 8] + 9;
if (value & 0xff0000)
return __lowest_bit_bitmap[(value & 0xff0000) >> 16] + 17;
return __lowest_bit_bitmap[(value & 0xff000000) >> 24] + 25;
}
highest_ready_priority = __rt_ffs(rt_thread_ready_priority_group) - 1;
rt_thread_ready_priority_group
变量中低位代表更高优先级。
3、rt_thread_priority_table
struct rt_list_node
{
struct rt_list_node *next; /**< point to next node. */
struct rt_list_node *prev; /**< point to prev node. */
};
typedef struct rt_list_node rt_list_t;
#define RT_THREAD_PRIORITY_MAX 32
rt_list_t rt_thread_priority_table[RT_THREAD_PRIORITY_MAX];
rt_thread_startup
函数中调用rt_thread_resume
中调用的rt_schedule_insert_thread
函数调用的rt_list_insert_before
函数完成插入列表。
1、初始化
rt_thread_priority_table
在rt_system_scheduler_init
函数中初始化。
2、main线程插入
rt_application_init
函数中创建main
线程,并调用将main
线程插入到rt_thread_priority_table[10]
中。
3、idle线程插入
rt_thread_idle_init
函数中创建idle
线程,并调用将idle
线程插入到rt_thread_priority_table[31]
中。
4、总结
4、rt_list_entry
#define rt_list_entry(node, type, member) \
rt_container_of(node, type, member)
#define rt_container_of(ptr, type, member) \
((type *)((char *)(ptr) - (unsigned long)(&((type *)0)->member)))
/* get switch to thread */
to_thread = rt_list_entry(rt_thread_priority_table[highest_ready_priority].next,
struct rt_thread,
tlist);
to_thread
保存当前就绪最高优先级的线程结构体首地址。
5、rt_current_thread
rt_current_thread = to_thread;
将下一个执行线程保存在rt_current_thread
变量中。
6、rt_hw_context_switch_to
;/*
; * void rt_hw_context_switch_to(rt_uint32 to);
; * r0 --> to
; * this fucntion is used to perform the first thread switch
; */
rt_hw_context_switch_to PROC
EXPORT rt_hw_context_switch_to
; set to thread
LDR r1, =rt_interrupt_to_thread
STR r0, [r1]
; set from thread to 0
LDR r1, =rt_interrupt_from_thread
MOV r0, #0x0
STR r0, [r1]
; set interrupt flag to 1
LDR r1, =rt_thread_switch_interrupt_flag
MOV r0, #1
STR r0, [r1]
; set the PendSV exception priority
LDR r0, =NVIC_SYSPRI2
LDR r1, =NVIC_PENDSV_PRI
LDR.W r2, [r0,#0x00] ; read
ORR r1,r1,r2 ; modify
STR r1, [r0] ; write-back
; trigger the PendSV exception (causes context switch)
LDR r0, =NVIC_INT_CTRL
LDR r1, =NVIC_PENDSVSET
STR r1, [r0]
; restore MSP
LDR r0, =SCB_VTOR
LDR r0, [r0]
LDR r0, [r0]
MSR msp, r0
; enable interrupts at processor level
CPSIE F
CPSIE I
; never reach here!
ENDP
rt_hw_context_switch_to((rt_uint32_t)&to_thread->sp);
作用:切换到下一个线程。