import java.util.Scanner;
public class Main {
static class SegmentTree {
// arr[]为原序列的信息从0开始,但在arr里是从1开始的
// sum[]模拟线段树维护区间和
// lazy[]为累加懒惰标记
// change[]为更新的值
// update[]为更新慵懒标记
private int n;
private long[] arr;
private long[] sum;
private long[] lazy;
private long[] change;
private boolean[] update;
public SegmentTree(long[] origin) {
n = origin.length;
arr = new long[n + 1]; // arr[0] 不用 从1开始使用
for (int i = 1; i <= n; i++) {
arr[i] = origin[i - 1];
}
sum = new long[n << 2 ^ 1]; // 用来支持脑补概念中,某一个范围的累加和信息
lazy = new long[n << 2 ^ 1]; // 用来支持脑补概念中,某一个范围沒有往下傳遞的纍加任務
change = new long[n << 2 ^ 1]; // 用来支持脑补概念中,某一个范围有没有更新操作的任务
update = new boolean[n << 2 ^ 1]; // 用来支持脑补概念中,某一个范围更新任务,更新成了什么
build(1, origin.length, 1);
}
private void pushUp(int rt) {
sum[rt] = sum[rt << 1] + sum[rt << 1 ^ 1];
}
// ln表示左子树元素结点个数,rn表示右子树结点个数
private void pushDown(int rt, int ln, int rn) {
if (update[rt]) {
update[rt << 1] = true;
update[rt << 1 ^ 1] = true;
change[rt << 1] = change[rt];
change[rt << 1 ^ 1] = change[rt];
lazy[rt << 1] = 0;
lazy[rt << 1 ^ 1] = 0;
sum[rt << 1] = change[rt] * ln;
sum[rt << 1 ^ 1] = change[rt] * rn;
update[rt] = false;
}
if (lazy[rt] != 0) {
lazy[rt << 1] += lazy[rt];
sum[rt << 1] += lazy[rt] * ln;
lazy[rt << 1 ^ 1] += lazy[rt];
sum[rt << 1 ^ 1] += lazy[rt] * rn;
lazy[rt] = 0;
}
}
// 在初始化阶段,先把sum数组,填好
// 在arr[l~r]范围上,去build,1~N,
// rt : 这个范围在sum中的下标
public void build(int l, int r, int rt) {
if (l == r) {
sum[rt] = arr[l];
return;
}
int mid = (l + r) >> 1;
build(l, mid, rt << 1);
build(mid + 1, r, rt << 1 ^ 1);
pushUp(rt);
}
public void update(int L, int R, int C, int l, int r, int rt) {
if (L <= l && r <= R) {
update[rt] = true;
change[rt] = C;
sum[rt] = C * (r - l + 1);
lazy[rt] = 0;
return;
}
// 当前任务躲不掉,无法懒更新,要往下发
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
if (L <= mid) {
update(L, R, C, l, mid, rt << 1);
}
if (R > mid) {
update(L, R, C, mid + 1, r, rt << 1 ^ 1);
}
pushUp(rt);
}
// L..R -> 任务范围 ,所有的值累加上C
// l,r -> 表达的范围
// rt 去哪找l,r范围上的信息
public void add(int L, int R, int C,
int l, int r,
int rt) {
// 任务的范围彻底覆盖了,当前表达的范围
if (L <= l && r <= R) {
sum[rt] += C * (r - l + 1);
lazy[rt] += C;
return;
}
// 要把任务往下发
// 任务 L, R 没有把本身表达范围 l,r 彻底包住
int mid = (l + r) >> 1;
// 下发之前的lazy add任务
pushDown(rt, mid - l + 1, r - mid);
// 左孩子是否需要接到任务
if (L <= mid) {
add(L, R, C, l, mid, rt << 1);
}
// 右孩子是否需要接到任务
if (R > mid) {
add(L, R, C, mid + 1, r, rt << 1 ^ 1);
}
// 左右孩子做完任务后,我更新我的sum信息
pushUp(rt);
}
public long query(int L, int R, int l, int r, int rt) {
if (L <= l && r <= R) {
return sum[rt];
}
int mid = (l + r) >> 1;
pushDown(rt, mid - l + 1, r - mid);
long ans = 0;
if (L <= mid) {
ans += query(L, R, l, mid, rt << 1);
}
if (R > mid) {
ans += query(L, R, mid + 1, r, rt << 1 ^ 1);
}
return ans;
}
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
while (in.hasNext()) {
int n = in.nextInt();
int m = in.nextInt();
long[] arr = new long[n];
for (int i = 0; i < n; ++i) {
arr[i] = in.nextInt();
}
SegmentTree segmentTree = new SegmentTree(arr);
while (m-- > 0) {
String command = in.next();
int x = in.nextInt();
int y = in.nextInt();
if ("Add".equals(command)) {
int a = in.nextInt();
segmentTree.add(x, y, a, 1, n, 1);
} else if ("Update".equals(command)) {
int a = in.nextInt();
segmentTree.update(x, y, a, 1, n, 1);
} else {
System.out.println(segmentTree.query(x, y, 1, n, 1));
}
}
}
}
}