题解:很显然可以对权值取对数,然后把几何平均值转为算术平均值,然后很显然是分数规划。先对每个模式串建立AC自动机,每个节点w[i],sz[i]分别表示以其为前缀的字符串,然后再二分最优解k,然后w[i]-=k*sz[i],然后枚举T,在AC自动机上DP一遍,求最大值是否大于0即可。
#include<bits/stdc++.h>
using namespace std;
const int N=;
int n,m,tot,ch[N][],fail[N],sz[N],g[N][N],h[N][N];
double w[N],f[N][N];
char T[N],str[N],ans[N];
void insert(int v)
{
int u=,len=strlen(str+);
for(int i=;i<=len;++i)
{
if(!ch[u][str[i]-''])ch[u][str[i]-'']=++tot;
u=ch[u][str[i]-''];
}
w[u]=log(v),sz[u]+=;
}
void build()
{
queue<int>q;
for(int i=;i<;i++)if(ch[][i])q.push(ch[][i]);
while(!q.empty())
{
int u=q.front();q.pop();
w[u]+=w[fail[u]],sz[u]+=sz[fail[u]];
for(int i=;i<;i++)
if(ch[u][i])fail[ch[u][i]]=ch[fail[u]][i],q.push(ch[u][i]);
else ch[u][i]=ch[fail[u]][i];
}
}
void dp(int i,int j,int k)
{
int c=ch[j][k];
if(f[i][c]<f[i-][j]+w[c])f[i][c]=f[i-][j]+w[c],g[i][c]=j,h[i][c]=k;
}
bool check(double val)
{
for(int i=;i<=tot;i++)w[i]-=val*sz[i];
for(int i=;i<=n;i++)
for(int j=;j<=tot;j++)
f[i][j]=-1e300;
f[][]=;
for(int i=;i<=n;i++)
for(int j=;j<=tot;j++)
if(T[i]=='.')for(int k=;k<;k++)dp(i,j,k);
else dp(i,j,T[i]-'');
double ans=-1e300;
for(int i=;i<=tot;i++)ans=max(ans,f[n][i]);
for(int i=;i<=tot;i++)w[i]+=val*sz[i];
return ans>;
}
int main()
{
scanf("%d%d",&n,&m);
scanf("%s",T+);
for(int i=,x;i<=m;i++)scanf("%s%d",str+,&x),insert(x);
build();
double l=,r=,mid;
while(r-l>1e-)
{
mid=(l+r)/;
if(check(mid))l=mid;else r=mid;
}
check(l);
int pos=;
for(int i=;i<=tot;i++)if(f[n][i]>f[n][pos])pos=i;
for(int i=n;i;i--)ans[i]=h[i][pos]+,pos=g[i][pos];
for(int i=;i<=n;i++)putchar(ans[i]);
}