SpringCloud DataFlow — 0. 本地部署部署
SpringCloud DataFlow — 1. 自定义Processor
SpringCloud DataFlow — 2. 自定义Sink
SpringCloud DataFlow — 3. 暴露properties
SpringCloud DataFlow — 4. Prometheus + Grafana 监控
SpringCloud DataFlow — 5. 多分支负载
以 unpack-processor-kafka 为例
1. pom.xml 中添加依赖
1.1 dependencies
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud.stream.app</groupId>
<artifactId>app-starters-micrometer-common</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud.stream.app</groupId>
<artifactId>app-starters-security-common</artifactId>
</dependency>
<dependency>
<groupId>io.micrometer</groupId>
<artifactId>micrometer-registry-prometheus</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
1.2 dependencyManagement
<dependency>
<groupId>org.springframework.cloud.stream.app</groupId>
<artifactId>app-starters-core-dependencies</artifactId>
<version>2.1.0.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>
2. Prometheus Service Discovery
2.1 下载zip代码包
https://github.com/tzolov/spring-cloud-dataflow-prometheus-service-discovery
2.2 解压缩并切换路径
cd spring-cloud-dataflow-prometheus-service-discovery-master
2.3 打包jar
./mvnw clean package -Dmaven.test.skip=true
2.4 运行服务
java -jar target/spring-cloud-dataflow-prometheus-service-discovery-0.0.5.BUILD-SNAPSHOT.jar --metrics.prometheus.target.discoveryUrl='http://127.0.0.1:9393/runtime/apps' --metrics.prometheus.target.cron='0/30 * * * * *' --metrics.prometheus.target.mode=local --metrics.prometheus.target.overrideIp='127.0.0.1' --server.port=8181
3. Prometheus
3.1 安装prometheus
brew install prometheus
3.2 进入安装目录
cd /usr/local/Cellar/prometheus/2.11.1
3.3 修改homebrew.mxcl.prometheus.plist
# 修改第十一行
<string>/usr/local/opt/prometheus/bin/prometheus --config.file=/usr/local/etc/prometheus.yml</string>
3.4 添加prometheus.yml
vim /usr/local/etc/prometheus.yml
# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
# - alertmanager:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
# - "first_rules.yml"
# - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus'
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ['localhost:9090']
- job_name: 'dataflow'
metrics_path: '/actuator/prometheus'
file_sd_configs:
- files:
- /tmp/targets.json
3.4 启动服务
brew services start prometheus
3.5 查看
http://localhost:9090/targets
4. Grafana
4.1 安装Grafana
brew install grafana
4.2 启动服务
brew services start grafana
4.3 查看
http://localhost:3000
4.4 配置
4.4.1 data source
Name: prometheus
URL: http://localhost:9090
Access: server(default)
Save & Test
4.4.2 dashboard
# 为了简便, 导入被人写好的配置
1. 访问: https://grafana.com/grafana/dashboards
2. Search: data flow
3. 点击: "SCDF Streams Prometheus"
4. 获得dashboard编号: 9933
5. 访问: http://localhost:3000/dashboard/import
6. Grafana.com Dashboard 输入 9933
7. 点击 "load"
8. ScdfPrometheus 选择4.4.1中创建的数据源数据源 "prometheus"
9. 点击 "Import"