装饰器一直以来都是 Python 中很有用、很经典的一个 feature,在工程中的应用也十分广泛,比如日志、缓存等等的任务都会用到。然而,在平常工作生活中,我发现不少人,尤其是初学者,常常因为其相对复杂的表示,对装饰器望而生畏,认为它“too fancy to learn”,实际并不如此。
函数 -> 装饰器
引入装饰器之前,我们首先一起来复习一下,必须掌握的函数的几个核心概念。
第一点,我们要知道,在 Python 中,函数是一等公民(first-class citizen),函数也是对象。我们可以把函数赋予变量,比如下面这段代码:
def func(message):
print('Got a message: {}'.format(message))
send_message = func
send_message('hello world')
# 输出
Got a message: hello world
这个例子中,我们把函数 func 赋予了变量 send_message,这样之后你调用 send_message,就相当于是调用函数 func()。
第二点,我们可以把函数当作参数,传入另一个函数中,比如下面这段代码:
def get_message(message):
return 'Got a message: ' + message
def root_call(func, message):
print(func(message))
root_call(get_message, 'hello world')
# 输出
Got a message: hello world
这个例子中,我们就把函数 get_message 以参数的形式,传入了函数 root_call() 中然后调用它。
第三点,我们可以在函数里定义函数,也就是函数的嵌套。这里我同样举了一个例子:
def func(message):
def get_message(message):
print('Got a message: {}'.format(message))
return get_message(message)
func('hello world')
# 输出
Got a message: hello world
这段代码中,我们在函数 func() 里又定义了新的函数 get_message(),调用后作为 func() 的返回值返回。
第四点,要知道,函数的返回值也可以是函数对象(闭包),比如下面这个例子:
def func_closure():
def get_message(message):
print('Got a message: {}'.format(message))
return get_message
send_message = func_closure()
send_message('hello world')
# 输出
Got a message: hello world
这里,函数 func_closure() 的返回值是函数对象 get_message 本身,之后,我们将其赋予变量 send_message,再调用 send_message(‘hello world’),最后输出了’Got a message: hello world’。
简单的装饰器
简单的复习之后,我们接下来学习今天的新知识——装饰器。按照习惯,我们可以先来看一个装饰器的简单例子:
def my_decorator(func):
def wrapper():
print('wrapper of decorator')
func()
return wrapper
def greet():
print('hello world')
greet = my_decorator(greet)
greet()
# 输出
wrapper of decorator
hello world
这段代码中,变量 greet 指向了内部函数 wrapper(),而内部函数 wrapper() 中又会调用原函数 greet(),因此,最后调用 greet() 时,就会先打印’wrapper of decorator’,然后输出’hello world’。
这里的函数 my_decorator() 就是一个装饰器,它把真正需要执行的函数 greet() 包裹在其中,并且改变了它的行为,但是原函数 greet() 不变。
事实上,上述代码在 Python 中有更简单、更优雅的表示:
def my_decorator(func):
def wrapper():
print('wrapper of decorator')
func()
return wrapper
@my_decorator
def greet():
print('hello world')
greet()
这里的@,我们称之为语法糖,@my_decorator就相当于前面的greet=my_decorator(greet)语句,只不过更加简洁。因此,如果你的程序中有其它函数需要做类似的装饰,你只需在它们的上方加上@decorator就可以了,这样就大大提高了函数的重复利用和程序的可读性。
带有参数的装饰器
你或许会想到,如果原函数 greet() 中,有参数需要传递给装饰器怎么办?
一个简单的办法,是可以在对应的装饰器函数 wrapper() 上,加上相应的参数,比如:
def my_decorator(func):
def wrapper(message):
print('wrapper of decorator')
func(message)
return wrapper
@my_decorator
def greet(message):
print(message)
greet('hello world')
# 输出
wrapper of decorator
hello world
不过,新的问题来了。如果我另外还有一个函数,也需要使用 my_decorator() 装饰器,但是这个新的函数有两个参数,又该怎么办呢?比如:
@my_decorator
def celebrate(name, message):
...
事实上,通常情况下,我们会把*args和kwargs,作为装饰器内部函数 wrapper() 的参数。*args和kwargs,表示接受任意数量和类型的参数,因此装饰器就可以写成下面的形式:
def my_decorator(func):
def wrapper(*args, **kwargs):
print('wrapper of decorator')
func(*args, **kwargs)
return wrapper
带有自定义参数的装饰器
其实,装饰器还有更大程度的灵活性。刚刚说了,装饰器可以接受原函数任意类型和数量的参数,除此之外,它还可以接受自己定义的参数。
举个例子,比如我想要定义一个参数,来表示装饰器内部函数被执行的次数,那么就可以写成下面这种形式:
def repeat(num):
def my_decorator(func):
def wrapper(*args, **kwargs):
for i in range(num):
print('wrapper of decorator')
func(*args, **kwargs)
return wrapper
return my_decorator
@repeat(4)
def greet(message):
print(message)
greet('hello world')
# 输出:
wrapper of decorator
hello world
wrapper of decorator
hello world
wrapper of decorator
hello world
wrapper of decorator
hello world
原函数还是原函数吗?
现在,我们再来看个有趣的现象。还是之前的例子,我们试着打印出 greet() 函数的一些元信息:
greet.__name__
## 输出
'wrapper'
help(greet)
# 输出
Help on function wrapper in module __main__:
wrapper(*args, **kwargs)
你会发现,greet() 函数被装饰以后,它的元信息变了。元信息告诉我们“它不再是以前的那个 greet() 函数,而是被 wrapper() 函数取代了”。
为了解决这个问题,我们通常使用内置的装饰器@functools.wrap,它会帮助保留原函数的元信息(也就是将原函数的元信息,拷贝到对应的装饰器函数里)。
import functools
def my_decorator(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
print('wrapper of decorator')
func(*args, **kwargs)
return wrapper
@my_decorator
def greet(message):
print(message)
greet.__name__
# 输出
'greet'
类装饰器
前面我们主要讲了函数作为装饰器的用法,实际上,类也可以作为装饰器。类装饰器主要依赖于函数__ call__(),每当你调用一个类的示例时,函数__ call__()就会被执行一次。
我们来看下面这段代码:
class Count:
def __init__(self, func):
self.func = func
self.num_calls = 0
def __call__(self, *args, **kwargs):
self.num_calls += 1
print('num of calls is: {}'.format(self.num_calls))
return self.func(*args, **kwargs)
@Count
def example():
print("hello world")
example()
# 输出
num of calls is: 1
hello world
example()
# 输出
num of calls is: 2
hello world
...
这里,我们定义了类 Count,初始化时传入原函数 func(),而__call__()函数表示让变量 num_calls 自增 1,然后打印,并且调用原函数。因此,在我们第一次调用函数 example() 时,num_calls 的值是 1,而在第二次调用时,它的值变成了 2。
装饰器的嵌套
回顾刚刚讲的例子,基本都是一个装饰器的情况,但实际上,Python 也支持多个装饰器,比如写成下面这样的形式:
@decorator1
@decorator2
@decorator3
def func():
...
它的执行顺序从里到外,所以上面的语句也等效于下面这行代码:
decorator1(decorator2(decorator3(func)))
这样,'hello world’这个例子,就可以改写成下面这样:
import functools
def my_decorator1(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
print('execute decorator1')
func(*args, **kwargs)
return wrapper
def my_decorator2(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
print('execute decorator2')
func(*args, **kwargs)
return wrapper
@my_decorator1
@my_decorator2
def greet(message):
print(message)
greet('hello world')
# 输出
execute decorator1
execute decorator2
hello world
装饰器用法实例
结合实际工作中的几个例子。
身份认证
首先是最常见的身份认证的应用。这个很容易理解,举个最常见的例子,你登录微信,需要输入用户名密码,然后点击确认,这样,服务器端便会查询你的用户名是否存在、是否和密码匹配等等。如果认证通过,你就可以顺利登录;如果不通过,就抛出异常并提示你登录失败。
再比如一些网站,你不登录也可以浏览内容,但如果你想要发布文章或留言,在点击发布时,服务器端便会查询你是否登录。如果没有登录,就不允许这项操作等等。
我们来看一个大概的代码示例:
import functools
def authenticate(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
request = args[0]
if check_user_logged_in(request): # 如果用户处于登录状态
return func(*args, **kwargs) # 执行函数post_comment()
else:
raise Exception('Authentication failed')
return wrapper
@authenticate
def post_comment(request, ...)
...
这段代码中,我们定义了装饰器 authenticate;而函数 post_comment(),则表示发表用户对某篇文章的评论。每次调用这个函数前,都会先检查用户是否处于登录状态,如果是登录状态,则允许这项操作;如果没有登录,则不允许。
日志记录
日志记录同样是很常见的一个案例。在实际工作中,如果你怀疑某些函数的耗时过长,导致整个系统的 latency(延迟)增加,所以想在线上测试某些函数的执行时间,那么,装饰器就是一种很常用的手段。
我们通常用下面的方法来表示:
import time
import functools
def log_execution_time(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
start = time.perf_counter()
res = func(*args, **kwargs)
end = time.perf_counter()
print('{} took {} ms'.format(func.__name__, (end - start) * 1000))
return res
return wrapper
@log_execution_time
def calculate_similarity(items):
...
这里,装饰器 log_execution_time 记录某个函数的运行时间,并返回其执行结果。如果你想计算任何函数的执行时间,在这个函数上方加上@log_execution_time即可。
输入合理性检查
在大型公司的机器学习框架中,我们调用机器集群进行模型训练前,往往会用装饰器对其输入(往往是很长的 JSON 文件)进行合理性检查。这样就可以大大避免,输入不正确对机器造成的巨大开销。
它的写法往往是下面的格式:
import functools
def validation_check(input):
@functools.wraps(func)
def wrapper(*args, **kwargs):
... # 检查输入是否合法
@validation_check
def neural_network_training(param1, param2, ...):
...
其实在工作中,很多情况下都会出现输入不合理的现象。因为我们调用的训练模型往往很复杂,输入的文件有成千上万行,很多时候确实也很难发现。
试想一下,如果没有输入的合理性检查,很容易出现“模型训练了好几个小时后,系统却报错说输入的一个参数不对,成果付之一炬”的现象。这样的“*”,大大减缓了开发效率,也对机器资源造成了巨大浪费。
缓存
LRU cache,在 Python 中的表示形式是@lru_cache。@lru_cache会缓存进程中的函数参数和结果,当缓存满了以后,会删除 least recenly used 的数据。
正确使用缓存装饰器,往往能极大地提高程序运行效率。为什么呢?我举一个常见的例子来说明。
大型公司服务器端的代码中往往存在很多关于设备的检查,比如你使用的设备是安卓还是 iPhone,版本号是多少。这其中的一个原因,就是一些新的 feature,往往只在某些特定的手机系统或版本上才有(比如 Android v200+)。
这样一来,我们通常使用缓存装饰器,来包裹这些检查函数,避免其被反复调用,进而提高程序运行效率,比如写成下面这样:
@lru_cache
def check(param1, param2, ...) # 检查用户设备类型,版本号等等
...