Flink SQL Client综合实战,项目实践

CREATE TABLE user_behavior (

user_id BIGINT,

item_id BIGINT,

category_id BIGINT,

behavior STRING,

ts TIMESTAMP(3),

proctime as PROCTIME(), – 处理时间列

WATERMARK FOR ts as ts - INTERVAL ‘5’ SECOND – 在ts上定义watermark,ts成为事件时间列

) WITH (

‘connector.type’ = ‘kafka’, – kafka connector

‘connector.version’ = ‘universal’, – universal 支持 0.11 以上的版本

‘connector.topic’ = ‘user_behavior’, – kafka topic

‘connector.startup-mode’ = ‘earliest-offset’, – 从起始 offset 开始读取

‘connector.properties.zookeeper.connect’ = ‘192.168.50.43:2181’, – zk 地址

‘connector.properties.bootstrap.servers’ = ‘192.168.50.43:9092’, – broker 地址

‘format.type’ = ‘json’ – 数据源格式为 json

);

  1. 执行SELECT * FROM user_behavior;看看原始数据,如果消息正常应该和下图类似:

Flink SQL Client综合实战,项目实践

窗口统计

  1. 下面的SQL是以每十分钟为窗口,统计每个窗口内的总浏览数,TUMBLE_START返回的数据格式是timestamp,这里再调用DATE_FORMAT函数将其格式化成了字符串:

SELECT DATE_FORMAT(TUMBLE_START(ts, INTERVAL ‘10’ MINUTE), ‘yyyy-MM-dd hh:mm:ss’),

DATE_FORMAT(TUMBLE_END(ts, INTERVAL ‘10’ MINUTE), ‘yyyy-MM-dd hh:mm:ss’),

COUNT(*)

FROM user_behavior

WHERE behavior = ‘pv’

GROUP BY TUMBLE(ts, INTERVAL ‘10’ MINUTE);

  1. 得到数据如下所示:

Flink SQL Client综合实战,项目实践

数据写入ElasticSearch

  1. 确保elasticsearch已部署好;

  2. 执行以下语句即可创建es表,请按照您自己的es信息调整下面的参数:

CREATE TABLE pv_per_minute (

start_time STRING,

end_time STRING,

pv_cnt BIGINT

) WITH (

‘connector.type’ = ‘elasticsearch’, – 类型

‘connector.version’ = ‘6’, – elasticsearch版本

‘connector.hosts’ = ‘http://192.168.133.173:9200’, – elasticsearch地址

‘connector.index’ = ‘pv_per_minute’, – 索引名,相当于数据库表名

‘connector.document-type’ = ‘user_behavior’, – type,相当于数据库库名

‘connector.bulk-flush.max-actions’ = ‘1’, – 每条数据都刷新

‘format.type’ = ‘json’, – 输出数据格式json

‘update-mode’ = ‘append’

);

  1. 执行以下语句,就会将每分钟的pv总数写入es的pv_per_minute索引:

INSERT INTO pv_per_minute

SELECT DATE_FORMAT(TUMBLE_START(ts, INTERVAL ‘1’ MINUTE), ‘yyyy-MM-dd hh:mm:ss’) AS start_time,

DATE_FORMAT(TUMBLE_END(ts, INTERVAL ‘1’ MINUTE), ‘yyyy-MM-dd hh:mm:ss’) AS end_time,

COUNT(*) AS pv_cnt

FROM user_behavior

WHERE behavior = ‘pv’

GROUP BY TUMBLE(ts, INTERVAL ‘1’ MINUTE);

  1. 用es-head查看,发现数据已成功写入:

Flink SQL Client综合实战,项目实践

联表操作

  1. 当前user_behavior表的category_id表示商品类目,例如11120表示计算机书籍,61626表示牛仔裤,本次实战的数据集中,这样的类目共有五千多种;

  2. 如果我们将这五千多种类目分成6个大类,例如11120属于教育类,61626属于服装类,那么应该有个大类和类目的关系表;

  3. 这个大类和类目的关系表在MySQL创建,表名叫category_info,建表语句如下:

CREATE TABLE category_info(

id int(11) unsigned NOT NULL AUTO_INCREMENT,

parent_id bigint ,

category_id bigint ,

PRIMARY KEY ( id )

) ENGINE=InnoDB AUTO_INCREMENT=5 DEFAULT CHARSET=utf8 COLLATE=utf8_bin;

  1. 表category_info所有数据来自对原始数据中category_id字段的提取,并且随机将它们划分为6个大类,该表的数据请在我的GitHub下载:https://raw.githubusercontent.com/zq2599/blog_demos/master/files/category_info.sql

  2. 请在MySQL上建表category_info,并将上述数据全部写进去;

  3. 在Flink SQL Client执行以下语句创建这个维表,mysql信息请按您自己配置调整:

CREATE TABLE category_info (

parent_id BIGINT, – 商品大类

category_id BIGINT – 商品详细类目

) WITH (

‘connector.type’ = ‘jdbc’,

‘connector.url’ = ‘jdbc:mysql://192.168.50.43:3306/flinkdemo’,

‘connector.table’ = ‘category_info’,

‘connector.driver’ = ‘com.mysql.jdbc.Driver’,

‘connector.username’ = ‘root’,

‘connector.password’ = ‘123456’,

‘connector.lookup.cache.max-rows’ = ‘5000’,

‘connector.lookup.cache.ttl’ = ‘10min’

);

  1. 尝试联表查询:

SELECT U.user_id, U.item_id, U.behavior, C.parent_id, C.category_id

FROM user_behavior AS U LEFT JOIN category_info FOR SYSTEM_TIME AS OF U.proctime AS C

ON U.category_id = C.category_id;

  1. 如下图,联表查询成功,每条记录都能对应大类:

Flink SQL Client综合实战,项目实践

  1. 再试试联表统计,每个大类的总浏览量:

SELECT C.parent_id, COUNT(*) AS pv_count

FROM user_behavior AS U LEFT JOIN category

《一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义》

【docs.qq.com/doc/DSmxTbFJ1cmN1R2dB】 完整内容开源分享

_info FOR SYSTEM_TIME AS OF U.proctime AS C

ON U.category_id = C.category_id

WHERE behavior = ‘pv’

GROUP BY C.parent_id;

  1. 如下图,数据是动态更新的:

Flink SQL Client综合实战,项目实践

  1. 执行以下语句,可以在统计时将大类ID转成中文名:

SELECT CASE C.parent_id

WHEN 1 THEN ‘服饰鞋包’

WHEN 2 THEN ‘家装家饰’

WHEN 3 THEN ‘家电’

WHEN 4 THEN ‘美妆’

WHEN 5 THEN ‘母婴’

WHEN 6 THEN ‘3C数码’

ELSE ‘其他’

END AS category_name,

COUNT(*) AS pv_count

上一篇:access逐字猜解法


下一篇:hive 分离字符串中的数字&字母