环境准备
新建项目后在pom.xml中添加依赖:
<dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-server</artifactId> <version>1.3.1</version> </dependency> <dependency> <groupId>org.apache.hbase</groupId> <artifactId>hbase-client</artifactId> <version>1.3.1</version> </dependency> <dependency> <groupId>jdk.tools</groupId> <artifactId>jdk.tools</artifactId> <version>1.8</version> <scope>system</scope>
<systemPath>${JAVA_HOME}/lib/tools.jar</systemPath> </dependency>
2 HBaseAPI
2.1 获取Configuration对象
public static Configuration conf; static{ //使用HBaseConfiguration的单例方法实例化 conf = HBaseConfiguration.create(); conf.set("hbase.zookeeper.quorum", "192.168.9.102"); conf.set("hbase.zookeeper.property.clientPort", "2181"); }
2.2 判断表是否存在
public static boolean isTableExist(String tableName) throws MasterNotRunningException, ZooKeeperConnectionException, IOException{ //在HBase中管理、访问表需要先创建HBaseAdmin对象 //Connection connection = ConnectionFactory.createConnection(conf); //HBaseAdmin admin = (HBaseAdmin) connection.getAdmin(); HBaseAdmin admin = new HBaseAdmin(conf); return admin.tableExists(tableName); }
2.3 创建表
public static void createTable(String tableName, String... columnFamily) throws MasterNotRunningException, ZooKeeperConnectionException, IOException{ HBaseAdmin admin = new HBaseAdmin(conf); //判断表是否存在 if(isTableExist(tableName)){ System.out.println("表" + tableName + "已存在"); //System.exit(0); }else{ //创建表属性对象,表名需要转字节 HTableDescriptor descriptor = new HTableDescriptor(TableName.valueOf(tableName)); //创建多个列族 for(String cf : columnFamily){ descriptor.addFamily(new HColumnDescriptor(cf)); } //根据对表的配置,创建表 admin.createTable(descriptor); System.out.println("表" + tableName + "创建成功!"); } }
2.4 删除表
public static void dropTable(String tableName) throws MasterNotRunningException, ZooKeeperConnectionException, IOException{ HBaseAdmin admin = new HBaseAdmin(conf); if(isTableExist(tableName)){ admin.disableTable(tableName); admin.deleteTable(tableName); System.out.println("表" + tableName + "删除成功!"); }else{ System.out.println("表" + tableName + "不存在!"); }
2.5 向表中插入数据
public static void addRowData(String tableName, String rowKey, String columnFamily, String column, String value) throws IOException{ //创建HTable对象 HTable hTable = new HTable(conf, tableName); //向表中插入数据 Put put = new Put(Bytes.toBytes(rowKey)); //向Put对象中组装数据 put.add(Bytes.toBytes(columnFamily), Bytes.toBytes(column), Bytes.toBytes(value)); hTable.put(put); hTable.close(); System.out.println("插入数据成功"); }
2.6 删除多行数据
public static void deleteMultiRow(String tableName, String... rows) throws IOException{ HTable hTable = new HTable(conf, tableName); List<Delete> deleteList = new ArrayList<Delete>(); for(String row : rows){ Delete delete = new Delete(Bytes.toBytes(row)); deleteList.add(delete); } hTable.delete(deleteList); hTable.close(); }
public static void deleteMultiRow(String tableName, String... rows) throws IOException{ HTable hTable = new HTable(conf, tableName); List<Delete> deleteList = new ArrayList<Delete>(); for(String row : rows){ Delete delete = new Delete(Bytes.toBytes(row)); deleteList.add(delete); } hTable.delete(deleteList); hTable.close(); }
2.7 获取所有数据
public static void getAllRows(String tableName) throws IOException{ HTable hTable = new HTable(conf, tableName); //得到用于扫描region的对象 Scan scan = new Scan(); //使用HTable得到resultcanner实现类的对象 ResultScanner resultScanner = hTable.getScanner(scan); for(Result result : resultScanner){ Cell[] cells = result.rawCells(); for(Cell cell : cells){ //得到rowkey System.out.println("行键:" + Bytes.toString(CellUtil.cloneRow(cell))); //得到列族 System.out.println("列族" + Bytes.toString(CellUtil.cloneFamily(cell))); System.out.println("列:" + Bytes.toString(CellUtil.cloneQualifier(cell))); System.out.println("值:" + Bytes.toString(CellUtil.cloneValue(cell))); } } }
2.8 获取某一行数据
public static void getRow(String tableName, String rowKey) throws IOException{ HTable table = new HTable(conf, tableName); Get get = new Get(Bytes.toBytes(rowKey)); //get.setMaxVersions();显示所有版本 //get.setTimeStamp();显示指定时间戳的版本 Result result = table.get(get); for(Cell cell : result.rawCells()){ System.out.println("行键:" + Bytes.toString(result.getRow())); System.out.println("列族" + Bytes.toString(CellUtil.cloneFamily(cell))); System.out.println("列:" + Bytes.toString(CellUtil.cloneQualifier(cell))); System.out.println("值:" + Bytes.toString(CellUtil.cloneValue(cell))); System.out.println("时间戳:" + cell.getTimestamp()); } }
2.9 获取某一行指定“列族:列”的数据
public static void getRowQualifier(String tableName, String rowKey, String family, String qualifier) throws IOException{ HTable table = new HTable(conf, tableName); Get get = new Get(Bytes.toBytes(rowKey)); get.addColumn(Bytes.toBytes(family), Bytes.toBytes(qualifier)); Result result = table.get(get); for(Cell cell : result.rawCells()){ System.out.println("行键:" + Bytes.toString(result.getRow())); System.out.println("列族" + Bytes.toString(CellUtil.cloneFamily(cell))); System.out.println("列:" + Bytes.toString(CellUtil.cloneQualifier(cell))); System.out.println("值:" + Bytes.toString(CellUtil.cloneValue(cell))); } }
3 MapReduce
通过HBase的相关JavaAPI,我们可以实现伴随HBase操作的MapReduce过程,比如使用MapReduce将数据从本地文件系统导入到HBase的表中,比如我们从HBase中读取一些原始数据后使用MapReduce做数据分析。
3.1 官方HBase-MapReduce
1.查看HBase的MapReduce任务的执行
$ bin/hbase mapredcp
2.环境变量的导入
(1)执行环境变量的导入(临时生效,在命令行执行下述操作)
$ export HBASE_HOME=/opt/module/hbase-1.3.1 $ export HADOOP_HOME=/opt/module/hadoop-2.7.2 $ export HADOOP_CLASSPATH=`${HBASE_HOME}/bin/hbase mapredcp`
(2)永久生效:在/etc/profile配置
export HBASE_HOME=/opt/module/hbase-1.3.1 export HADOOP_HOME=/opt/module/hadoop-2.7.2
并在hadoop-env.sh中配置:(注意:在for循环之后配)
并在hadoop-env.sh中配置:(注意:在for循环之后配) export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:/opt/module/hbase/lib/*
3.运行官方的MapReduce任务
-- 案例一:统计Student表中有多少行数据
$ /opt/module/hadoop-2.7.2/bin/yarn jar lib/hbase-server-1.3.1.jar rowcounter student
-- 案例二:使用MapReduce将本地数据导入到HBase
1)在本地创建一个tsv格式的文件:fruit.tsv
1001 Apple Red 1002 Pear Yellow 1003 Pineapple Yellow
2)创建HBase表
hbase(main):001:0> create ‘fruit‘,‘info‘
3)在HDFS中创建input_fruit文件夹并上传fruit.tsv文件
$ /opt/module/hadoop-2.7.2/bin/hdfs dfs -mkdir /input_fruit/
$ /opt/module/hadoop-2.7.2/bin/hdfs dfs -put fruit.tsv /input_fruit/
4)执行MapReduce到HBase的fruit表中
$ /opt/module/hadoop-2.7.2/bin/yarn jar lib/hbase-server-1.3.1.jar importtsv -Dimporttsv.columns=HBASE_ROW_KEY,info:name,info:color fruit hdfs://hadoop102:9000/input_fruit
5)使用scan命令查看导入后的结果
hbase(main):001:0> scan ‘fruit’
3.2 自定义HBase-MapReduce1
目标:将fruit表中的一部分数据,通过MR迁入到fruit_mr表中。
分步实现:
1.构建ReadFruitMapper类,用于读取fruit表中的数据
import java.io.IOException; import org.apache.hadoop.hbase.Cell; import org.apache.hadoop.hbase.CellUtil; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.client.Result; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableMapper; import org.apache.hadoop.hbase.util.Bytes; public class ReadFruitMapper extends TableMapper<ImmutableBytesWritable, Put> { @Override protected void map(ImmutableBytesWritable key, Result value, Context context) throws IOException, InterruptedException { //将fruit的name和color提取出来,相当于将每一行数据读取出来放入到Put对象中。 Put put = new Put(key.get()); //遍历添加column行 for(Cell cell: value.rawCells()){ //添加/克隆列族:info if("info".equals(Bytes.toString(CellUtil.cloneFamily(cell)))){ //添加/克隆列:name if("name".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){ //将该列cell加入到put对象中 put.add(cell); //添加/克隆列:color }else if("color".equals(Bytes.toString(CellUtil.cloneQualifier(cell)))){ //向该列cell加入到put对象中 put.add(cell); } } } //将从fruit读取到的每行数据写入到context中作为map的输出 context.write(key, put); } }
2. 构建WriteFruitMRReducer类,用于将读取到的fruit表中的数据写入到fruit_mr表中
import java.io.IOException; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableReducer; import org.apache.hadoop.io.NullWritable; public class WriteFruitMRReducer extends TableReducer<ImmutableBytesWritable, Put, NullWritable> { @Override protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context) throws IOException, InterruptedException { //读出来的每一行数据写入到fruit_mr表中 for(Put put: values){ context.write(NullWritable.get(), put); } } }
3.构建Fruit2FruitMRRunner extends Configured implements Tool用于组装运行Job任务
//组装Job public int run(String[] args) throws Exception { //得到Configuration Configuration conf = this.getConf(); //创建Job任务 Job job = Job.getInstance(conf, this.getClass().getSimpleName()); job.setJarByClass(Fruit2FruitMRRunner.class); //配置Job Scan scan = new Scan(); scan.setCacheBlocks(false); scan.setCaching(500); //设置Mapper,注意导入的是mapreduce包下的,不是mapred包下的,后者是老版本 TableMapReduceUtil.initTableMapperJob( "fruit", //数据源的表名 scan, //scan扫描控制器 ReadFruitMapper.class,//设置Mapper类 ImmutableBytesWritable.class,//设置Mapper输出key类型 Put.class,//设置Mapper输出value值类型 job//设置给哪个JOB ); //设置Reducer TableMapReduceUtil.initTableReducerJob("fruit_mr", WriteFruitMRReducer.class, job); //设置Reduce数量,最少1个 job.setNumReduceTasks(1); boolean isSuccess = job.waitForCompletion(true); if(!isSuccess){ throw new IOException("Job running with error"); } return isSuccess ? 0 : 1; }
4.主函数中调用运行该Job任务
public static void main( String[] args ) throws Exception{ Configuration conf = HBaseConfiguration.create(); int status = ToolRunner.run(conf, new Fruit2FruitMRRunner(), args); System.exit(status); }
5.打包运行任务
$ /opt/module/hadoop-2.7.2/bin/yarn jar ~/softwares/jars/hbase-0.0.1-SNAPSHOT.jar
com.z.hbase.mr1.Fruit2FruitMRRunner
提示:运行任务前,如果待数据导入的表不存在,则需要提前创建。
提示:maven打包命令:-P local clean package或-P dev clean package install(将第三方jar包一同打包,需要插件:maven-shade-plugin)
3.3 自定义HBase-MapReduce2
目标:实现将HDFS中的数据写入到HBase表中。
分步实现:
1.构建ReadFruitFromHDFSMapper于读取HDFS中的文件数据
import java.io.IOException; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class ReadFruitFromHDFSMapper extends Mapper<LongWritable, Text, ImmutableBytesWritable, Put> { @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { //从HDFS中读取的数据 String lineValue = value.toString(); //读取出来的每行数据使用\t进行分割,存于String数组 String[] values = lineValue.split("\t"); //根据数据中值的含义取值 String rowKey = values[0]; String name = values[1]; String color = values[2]; //初始化rowKey ImmutableBytesWritable rowKeyWritable = new ImmutableBytesWritable(Bytes.toBytes(rowKey)); //初始化put对象 Put put = new Put(Bytes.toBytes(rowKey)); //参数分别:列族、列、值 put.add(Bytes.toBytes("info"), Bytes.toBytes("name"), Bytes.toBytes(name)); put.add(Bytes.toBytes("info"), Bytes.toBytes("color"), Bytes.toBytes(color)); context.write(rowKeyWritable, put); } }
2.构建WriteFruitMRFromTxtReducer类
import java.io.IOException; import org.apache.hadoop.hbase.client.Put; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.mapreduce.TableReducer; import org.apache.hadoop.io.NullWritable; public class WriteFruitMRFromTxtReducer extends TableReducer<ImmutableBytesWritable, Put, NullWritable> { @Override protected void reduce(ImmutableBytesWritable key, Iterable<Put> values, Context context) throws IOException, InterruptedException { //读出来的每一行数据写入到fruit_hdfs表中 for(Put put: values){ context.write(NullWritable.get(), put); } } }
3.创建Txt2FruitRunner组装Job
public int run(String[] args) throws Exception { //得到Configuration Configuration conf = this.getConf(); //创建Job任务 Job job = Job.getInstance(conf, this.getClass().getSimpleName()); job.setJarByClass(Txt2FruitRunner.class); Path inPath = new Path("hdfs://hadoop102:9000/input_fruit/fruit.tsv"); FileInputFormat.addInputPath(job, inPath); //设置Mapper job.setMapperClass(ReadFruitFromHDFSMapper.class); job.setMapOutputKeyClass(ImmutableBytesWritable.class); job.setMapOutputValueClass(Put.class); //设置Reducer TableMapReduceUtil.initTableReducerJob("fruit_mr", WriteFruitMRFromTxtReducer.class, job); //设置Reduce数量,最少1个 job.setNumReduceTasks(1); boolean isSuccess = job.waitForCompletion(true); if(!isSuccess){ throw new IOException("Job running with error"); } return isSuccess ? 0 : 1; }
4.调用执行Job
public static void main(String[] args) throws Exception { Configuration conf = HBaseConfiguration.create(); int status = ToolRunner.run(conf, new Txt2FruitRunner(), args); System.exit(status); }
5.打包运行
$ /opt/module/hadoop-2.7.2/bin/yarn jar hbase-0.0.1-SNAPSHOT.jar com.atguigu.hbase.mr2.Txt2FruitRunner
提示:运行任务前,如果待数据导入的表不存在,则需要提前创建之。
提示:maven打包命令:-P local clean package或-P dev clean package install(将第三方jar包一同打包,需要插件:maven-shade-plugin)