题意:bc round 72 中文题面
分析(官方题解):
如果学过Dirichlet卷积的话知道这玩意就是g(n)=(f*1^k)(n),
由于有结合律,所以我们快速幂一下1^k就行了。
当然,强行正面刚和式也是能搞的(反正我不会)。
一次Dirichlet卷积复杂度是O(nlogn)的,所以总时间复杂度为O(nlognlogk).
注:普及Dirichlet卷积概念,设f,g为两个数论函数,
那么规定 (f∗g)=∑d|nf(d)g(n/d)为f,g的Dirichlet卷积
Dirichlet卷积有以下性质,有交换律和结合律,对加法有分配律
f∗(g∗h)=(f∗g)∗h
f∗(g+h)=f∗g+f∗h
f∗g=g∗f
然后对于这个题解上所说的一次Dirichlet卷积是O(nlogn)这个我不是很懂
但是看网上大神写的估计也差不多,感觉和埃氏筛的复杂度差不多甚至还要小应该是在O(nlognlogn)左右
所以下面的代码的复杂度大概应该是O(nlog^2nlogk)
然后顺带提一下,对于Dirichlet卷积来说,规定有一个幺元e的话
即:f*e=f,
这个幺元函数有一个性质e[1]=1,e[k]=0,k=1,2,3.....
这个在快速幂的时候会用到
然后上代码
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long LL;
const int N=1e5+;
const LL mod=1e9+;
int n,k;
LL f[N],s[N],ans[N],tmp[N];
void solve()
{
while(k)
{
if(k&)
{
for(int i=; i<=n; ++i)tmp[i]=;
for(int i=; i*i<=n; ++i)
{
tmp[i*i]=(tmp[i*i]+ans[i]*s[i])%mod;
for(int j=i+; j*i<=n; ++j)
tmp[i*j]+=(ans[i]*s[j]%mod+ans[j]*s[i]%mod)%mod,tmp[i*j]%=mod;
}
for(int i=; i<=n; ++i)ans[i]=tmp[i];
}
for(int i=; i<=n; ++i)tmp[i]=;
for(int i=; i*i<=n; ++i)
{
tmp[i*i]=(tmp[i*i]+s[i]*s[i])%mod;
for(int j=i+; j*i<=n; ++j)
tmp[i*j]+=(s[i]*s[j]%mod+s[j]*s[i]%mod)%mod,tmp[i*j]%=mod;
}
for(int i=;i<=n;++i)s[i]=tmp[i];
k>>=;
}
for(int i=; i<=n; ++i)tmp[i]=;
for(int i=; i*i<=n; ++i)
{
tmp[i*i]=(tmp[i*i]+f[i]*ans[i])%mod;
for(int j=i+; j*i<=n; ++j)
tmp[i*j]+=(f[i]*ans[j]%mod+f[j]*ans[i]%mod)%mod,tmp[i*j]%=mod;
}
for(int i=;i<=n;++i)ans[i]=tmp[i];
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&k);
for(int i=; i<=n; ++i)
scanf("%I64d",&f[i]),s[i] = ,ans[i] = ;
ans[] = ;
solve();
for(int i=; i<n; ++i)
printf("%I64d ",ans[i]);
printf("%I64d\n",ans[n]);
}
return ;
}