此博文主要是用来记录ROS-Kinetic 中,用于机器人轨迹规划的MoveIt功能包的学习记录。
引: Visualizing Collision的主要功能是:在RVIZ中可以可视化的看到:机器人与自身发生碰撞位置; 机器人与仿真环境其他物品发生碰撞的位置等。
注:Interactive Marker指的是RVIZ仿真环境中,控制机器人和box前后左右运动的红绿蓝的箭头。
这个教程主要使用了 InteractiveRobot 这一个Class
#include <ros/ros.h>
#include "interactivity/interactive_robot.h"
#include "interactivity/pose_string.h"
// MoveIt!
#include <moveit/robot_model/robot_model.h>
#include <moveit/robot_state/robot_state.h>
#include <moveit/planning_scene/planning_scene.h>
#include <moveit/collision_detection_fcl/collision_world_fcl.h>
#include <moveit/collision_detection_fcl/collision_robot_fcl.h>
#include <moveit/collision_detection/collision_tools.h>
planning_scene::PlanningScene* g_planning_scene = 0;
shapes::ShapePtr g_world_cube_shape;
ros::Publisher* g_marker_array_publisher = 0;
visualization_msgs::MarkerArray g_collision_points;
void help()
{
ROS_INFO("#####################################################");
ROS_INFO("RVIZ SETUP");
ROS_INFO("----------");
ROS_INFO(" Global options:");
ROS_INFO(" FixedFrame = /panda_link0");
ROS_INFO(" Add a RobotState display:");
ROS_INFO(" RobotDescription = robot_description");
ROS_INFO(" RobotStateTopic = interactive_robot_state");
ROS_INFO(" Add a Marker display:");
ROS_INFO(" MarkerTopic = interactive_robot_markers");
ROS_INFO(" Add an InteractiveMarker display:");
ROS_INFO(" UpdateTopic = interactive_robot_imarkers/update");
ROS_INFO(" Add a MarkerArray display:");
ROS_INFO(" MarkerTopic = interactive_robot_marray");
ROS_INFO("#####################################################");
}
void publishMarkers(visualization_msgs::MarkerArray& markers)
{
// delete old markers
if (g_collision_points.markers.size())
{
for (int i = 0; i < g_collision_points.markers.size(); i++)
g_collision_points.markers[i].action = visualization_msgs::Marker::DELETE;
g_marker_array_publisher->publish(g_collision_points);
}
// move new markers into g_collision_points
std::swap(g_collision_points.markers, markers.markers);
// draw new markers (if there are any)
if (g_collision_points.markers.size())
g_marker_array_publisher->publish(g_collision_points);
}
void computeCollisionContactPoints(InteractiveRobot& robot)
{
// move the world geometry in the collision world
Eigen::Affine3d world_cube_pose;
double world_cube_size;
robot.getWorldGeometry(world_cube_pose, world_cube_size);
g_planning_scene->getWorldNonConst()->moveShapeInObject("world_cube", g_world_cube_shape, world_cube_pose);
// BEGIN_SUB_TUTORIAL computeCollisionContactPoints
//
// Collision Requests
// ^^^^^^^^^^^^^^^^^^
// We will create a collision request for the Panda robot
collision_detection::CollisionRequest c_req;
collision_detection::CollisionResult c_res;
c_req.group_name = robot.getGroupName();
c_req.contacts = true;
c_req.max_contacts = 100;
c_req.max_contacts_per_pair = 5;
c_req.verbose = false;
// Checking for Collisions
// ^^^^^^^^^^^^^^^^^^^^^^^
// We check for collisions between robot and itself or the world.
g_planning_scene->checkCollision(c_req, c_res, *robot.robotState());
// Displaying Collision Contact Points
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// If there are collisions, we get the contact points and display them as markers.
// **getCollisionMarkersFromContacts()** is a helper function that adds the
// collision contact points into a MarkerArray message. If you want to use
// the contact points for something other than displaying them you can
// iterate through **c_res.contacts** which is a std::map of contact points.
// Look at the implementation of getCollisionMarkersFromContacts() in
// `collision_tools.cpp
// <https://github.com/ros-planning/moveit/blob/kinetic-devel/moveit_core/collision_detection/src/collision_tools.cpp>`_
// for how.
if (c_res.collision)
{
ROS_INFO("COLLIDING contact_point_count=%d", (int)c_res.contact_count);
if (c_res.contact_count > 0)
{
std_msgs::ColorRGBA color;
color.r = 1.0;
color.g = 0.0;
color.b = 1.0;
color.a = 0.5;
visualization_msgs::MarkerArray markers;
/* Get the contact ponts and display them as markers */
collision_detection::getCollisionMarkersFromContacts(markers, "panda_link0", c_res.contacts, color,
ros::Duration(), // remain until deleted
0.01); // radius
publishMarkers(markers);
}
}
// END_SUB_TUTORIAL
else
{
ROS_INFO("Not colliding");
// delete the old collision point markers
visualization_msgs::MarkerArray empty_marker_array;
publishMarkers(empty_marker_array);
}
}
int main(int argc, char** argv)
{
ros::init(argc, argv, "visualizing_collisions_tutorial");
ros::NodeHandle nh;
// BEGIN_TUTORIAL
//
// Initializing the Planning Scene and Markers
// ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
// For this tutorial we use an :codedir:`InteractiveRobot <interactivity/src/interactive_robot.cpp>`
// object as a wrapper that combines a robot_model with the cube and an interactive marker. We also
// create a :planning_scene:`PlanningScene` for collision checking. If you haven't already gone through the
// `planning scene tutorial <../planning_scene/planning_scene_tutorial.html>`_, you go through that first.
InteractiveRobot robot;
/* Create a PlanningScene */
g_planning_scene = new planning_scene::PlanningScene(robot.robotModel());
// Adding geometry to the PlanningScene
Eigen::Affine3d world_cube_pose;
double world_cube_size;
robot.getWorldGeometry(world_cube_pose, world_cube_size);
g_world_cube_shape.reset(new shapes::Box(world_cube_size, world_cube_size, world_cube_size));
g_planning_scene->getWorldNonConst()->addToObject("world_cube", g_world_cube_shape, world_cube_pose);
// CALL_SUB_TUTORIAL computeCollisionContactPoints
// END_TUTORIAL
// Create a marker array publisher for publishing contact points
g_marker_array_publisher =
new ros::Publisher(nh.advertise<visualization_msgs::MarkerArray>("interactive_robot_marray", 100));
robot.setUserCallback(computeCollisionContactPoints);
help();
ros::spin();
delete g_planning_scene;
delete g_marker_array_publisher;
ros::shutdown();
return 0;
}