题目大意:设计一个用于LRU cache算法的数据结构。 题目链接。关于LRU的基本知识可参考here
分析:为了保持cache的性能,使查找,插入,删除都有较高的性能,我们使用双向链表(std::list)和哈希表(std::unordered_map)作为cache的数据结构,因为:
- 双向链表插入删除效率高(单向链表插入和删除时,还要查找节点的前节点)
- 哈希表保存每个节点的地址,可以基本保证在O(1)时间内查找节点
具体实现细节:
- 越靠近链表头部,表示节点上次访问距离现在时间最短,尾部的节点表示最近访问最少
- 查询或者访问节点时,如果节点存在,把该节点交换到链表头部,同时更新hash表中该节点的地址
- 插入节点时,如果cache的size达到了上限,则删除尾部节点,同时要在hash表中删除对应的项。新节点都插入链表头部。 本文地址
代码如下:
struct CacheNode
{
int key;
int value;
CacheNode(int k, int v):key(k), value(v){}
}; class LRUCache{
public:
LRUCache(int capacity) {
size = capacity;
} int get(int key) {
if(cacheMap.find(key) == cacheMap.end())
return -;
else
{
//把当前访问的节点移到链表头部,并且更新map中该节点的地址
cacheList.splice(cacheList.begin(), cacheList, cacheMap[key]);
cacheMap[key] = cacheList.begin();
return cacheMap[key]->value;
} } void set(int key, int value) {
if(cacheMap.find(key) == cacheMap.end())
{
if(cacheList.size() == size)
{//删除链表尾部节点(最少访问的节点)
cacheMap.erase(cacheList.back().key);
cacheList.pop_back();
}
//插入新节点到链表头部,并且更新map中增加该节点
cacheList.push_front(CacheNode(key, value));
cacheMap[key] = cacheList.begin();
}
else
{//更新节点的值,把当前访问的节点移到链表头部,并且更新map中该节点的地址
cacheMap[key]->value = value;
cacheList.splice(cacheList.begin(), cacheList, cacheMap[key]);
cacheMap[key] = cacheList.begin();
} }
private:
list<CacheNode> cacheList;
unordered_map<int, list<CacheNode>::iterator>cacheMap;
int size;
};
【版权声明】转载请注明出处:http://www.cnblogs.com/TenosDoIt/p/3417157.html