链接:https://vjudge.net/problem/POJ-3352#author=0
题意:
给一个无向连通图,至少添加几条边使得去掉图中任意一条边不改变图的连通性(即使得它变为边双连通图)。
思路:
将图中的边双联通分量全部缩成一个点,得到度为1的点的数目。
若要使缩点后的图都边双联通,增加(leaf+1)/2条边即可。leaf就是度为1的点。
代码:
#include <iostream> #include <memory.h> #include <string> #include <istream> #include <sstream> #include <vector> #include <stack> #include <algorithm> #include <map> #include <queue> #include <math.h> #include <cstdio> #include <set> #include <iterator> #include <cstring> using namespace std; typedef long long LL; const int MAXN = 1e3+10; vector<int> G[MAXN]; stack<int> St; int Dfn[MAXN], Low[MAXN]; int Dis[MAXN], Fa[MAXN]; int times, res, cnt; int n, m; void Init() { for (int i = 1;i <= n;i++) G[i].clear(); memset(Dfn, 0, sizeof(Dfn)); memset(Low, 0, sizeof(Low)); memset(Dis, 0, sizeof(Dis)); memset(Fa, 0, sizeof(Fa)); times = res = cnt = 0; } void Tarjan(int u, int v) { Dfn[v] = Low[v] = ++times; St.push(v); for (int i = 0;i < G[v].size();i++) { int node = G[v][i]; if (node == u) continue; if (Dfn[node] == 0) Tarjan(v, node); Low[v] = min(Low[v], Low[node]); } if (Dfn[v] == Low[v]) { cnt++; int node; do { node = St.top(); Fa[node] = cnt; St.pop(); } while (node != v); } } int main() { string s; int t; while (cin >> n >> m) { int l, r; // cin >> n >> m; Init(); for (int i = 1;i <= m;i++) { cin >> l >> r; G[l].push_back(r); G[r].push_back(l); } Tarjan(0, 1); // copy(Fa+1, Fa+1+n, ostream_iterator<int> (cout, " ")); // copy(Dis+1, Dis+1+n, ostream_iterator<int> (cout, " ")); // cout << endl; for (int i = 1;i <= n;i++) { for (int j = 0;j < G[i].size();j++) { int node = G[i][j]; if (node == i) continue; if (Fa[i] != Fa[node]) Dis[Fa[node]]++; } } int leaf = 0; for (int i = 1;i <= cnt;i++) { if (Dis[i] == 1) leaf++; } // cout << "Output for Sample Input " << t << endl; cout << (leaf+1)/2 << endl; } return 0; }