由于RNN的梯度计算时,总会有一项Whh的k-i次方, 当i越小, 即(越靠前的层),Whh的k-i次方会越来越大,所以越前的层的梯度越容易出现梯度爆炸现象。
Gradient clipping
LSTM(可以解决梯度爆炸问题)
RNN原始模型
LSTM结构
可以看到LSTM的梯度计算公式为4项的和,这样可以防止出现次方项使梯度过大,也不会因为某一项的大小影响总体的梯度稳定。
也可以这样看: 当remember gate way 接近于1时,Ct 将约等于Ct-1,memory将很大长度上得到保留,求梯度时,偏Ct/偏Ct-1 将约等于1,梯度信息将保留,接近于CNN的shortcort理解方式。
实战
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
tf.random.set_seed(22)
np.random.seed(22)
os.environ["TF_CPP_MIN_LOG_LEVEL"] = '2'
batchsz = 128
# 常用单词数量, 其他不常用单词将表示为一种
total_words = 10000
# 一句中最大单词数量, 大于80将截取, 少于则padding
max_review_len = 80
# 每单词将用一个长度100的vector表示
embedding_len = 100
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
# 对每个句子进行预处理, 使得每句单词数量为80
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)
db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
# drop_remainder=True丢弃掉最后一个batch
# 由于运算时要求每一个batch大小相等, 所以要丢弃掉最后一个batch
db_train = db_train.shuffle(10000).batch(batchsz, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batchsz, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
print('x_test shape:', x_test.shape)
class MyRNN(keras.Model):
# units: 输出维度
def __init__(self, units):
super(MyRNN, self).__init__()
# [b, 64] H0 C0 初始化Ct 和 Ht
self.state0 = [tf.zeros([batchsz, units]), tf.zeros([batchsz, units])]
self.state1 = [tf.zeros([batchsz, units]), tf.zeros([batchsz, units])]
# 将文本转换为embedding表示
# [b, 80] => [b, 80, 100]
# (总得单词数量, 每单词将用一个长度100的vector表示 , 每个句子的单词数量)
self.embedding = layers.Embedding(total_words, embedding_len, input_length=max_review_len)
# print(tf.reduce_max(self.embedding), tf.reduce_min(self.embedding))
# [b, 80, 100] hidden_dim:64
# self.rnn_cell0 = layers.SimpleRNNCell(units, dropout=0.5)
# self.rnn_cell1 = layers.SimpleRNNCell(units, dropout=0.5)
self.rnn_cell0 = layers.LSTMCell(units, dropout=0.5)
self.rnn_cell1 = layers.LSTMCell(units, dropout=0.5)
# fc, [b, 80, 100] => [b, 64] => [b, 1]
self.outlayer = layers.Dense(1)
def call(self, inputs, training=None):
# [b, 80]
x = inputs
# embedding: [b, 80] => [b, 80, 100]
x = self.embedding(x)
# rnn cell compute
# [b, 80, 100] => [b, 64]
state0 = self.state0
state1 = self.state1
for word in tf.unstack(x, axis=1):
# h1 = x * Wxh + h0 * Whh
# out0: [b, 64]
out0, state0 = self.rnn_cell0(word, state0, training)
# out1: [b, 64]
out1, state1 = self.rnn_cell1(out0, state1, training)
# out: [b, 64] => [b, 1]
x = self.outlayer(out1)
# p(y is pos|x)
prob = tf.sigmoid(x)
return prob
def main():
units = 64
epochs = 4
model = MyRNN(units)
model.compile(optimizer=keras.optimizers.Adam(0.001),
loss=tf.losses.BinaryCrossentropy(),
metrics=["accuracy"])
model.fit(db_train, epochs=epochs, validation_data=db_test)
model.evaluate(db_test)
if __name__ == '__main__':
main()
import os
import tensorflow as tf
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
tf.random.set_seed(22)
np.random.seed(22)
os.environ["TF_CPP_MIN_LOG_LEVEL"] = '2'
batchsz = 64
# 常用单词数量, 其他不常用单词将表示为一种
total_words = 10000
# 一句中最大单词数量, 大于80将截取, 少于则padding
max_review_len = 80
# 每单词将用一个长度100的vector表示
embedding_len = 100
(x_train, y_train), (x_test, y_test) = keras.datasets.imdb.load_data(num_words=total_words)
# 对每个句子进行预处理, 使得每句单词数量为80
x_train = keras.preprocessing.sequence.pad_sequences(x_train, maxlen=max_review_len)
x_test = keras.preprocessing.sequence.pad_sequences(x_test, maxlen=max_review_len)
db_train = tf.data.Dataset.from_tensor_slices((x_train, y_train))
# drop_remainder=True丢弃掉最后一个batch
# 由于运算时要求每一个batch大小相等, 所以要丢弃掉最后一个batch
db_train = db_train.shuffle(10000).batch(batchsz, drop_remainder=True)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.batch(batchsz, drop_remainder=True)
print('x_train shape:', x_train.shape, tf.reduce_max(y_train), tf.reduce_min(y_train))
print('x_test shape:', x_test.shape)
class MyRNN(keras.Model):
# units: 输出维度
def __init__(self, units):
super(MyRNN, self).__init__()
# [b, 64] h0
self.state0 = [tf.zeros([batchsz, units])]
self.state1 = [tf.zeros([batchsz, units])] # h1
# 将文本转换为embedding表示
# [b, 80] => [b, 80, 100]
# (总得单词数量, 每单词将用一个长度100的vector表示 , 每个句子的单词数量)
self.embedding = layers.Embedding(total_words, embedding_len, input_length=max_review_len)
# print(tf.reduce_max(self.embedding), tf.reduce_min(self.embedding))
# [b, 80, 100] hidden_dim:64
self.rnn = keras.Sequential([
# layers.SimpleRNN(units, dropout=0.5, return_sequences=True, unroll=True),
# layers.SimpleRNN(units, dropout=0.5, unroll=True)
layers.LSTM(units, dropout=0.5, return_sequences=True, unroll=True),
layers.LSTM(units, dropout=0.5, unroll=True)
])
# fc, [b, 80, 100] => [b, 64] => [b, 1]
self.outlayer = layers.Dense(1)
def call(self, inputs, training=None):
# [b, 80]
x = inputs
# embedding: [b, 80] => [b, 80, 100]
x = self.embedding(x)
# rnn cell compute
# [b, 80, 100] => [b, 64]
x = self.rnn(x)
# out: [b, 64] => [b, 1]
x = self.outlayer(x)
# p(y is pos|x)
prob = tf.sigmoid(x)
return prob
def main():
units = 64
epochs = 4
model = MyRNN(units)
model.compile(optimizer=keras.optimizers.Adam(0.001),
loss=tf.losses.BinaryCrossentropy(),
metrics=["accuracy"])
model.fit(db_train, epochs=epochs, validation_data=db_test)
model.evaluate(db_test)
if __name__ == '__main__':
main()