最大匹配也叫最大边独立集,就是无向图中能取出两两不相邻的边的最大集合。
二分图最大匹配可以用最大流来解。
如果题目没有墙,那就是一道经典的二分图最大匹配问题:
把地图上的行和列分别作为点的X部和Y部,地图上每一块空地看作边,边的两个端点就是它所在的x行y列。这样,求最大边独立集即可。
而这一题有墙,然后我不会了。。
其实这题的建模也是一样的,也是行和列作为点,空地作为边:
- 对于每一行把被墙分隔的每一块连通的区域缩成一点,列也一样;
- 行缩成的点作为X部,列Y部;
- 某行连通区域最多就只能在区域内某一块空地放机器人,列也是一样;
- 如果某行连通区域和某列连通区域相交,就连边。
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 2555
#define MAXM 555555 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=; edge[NE].flow=;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-) continue;
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=,aug=INF;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==) break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return flow;
} char map[][];
int main(){
int t,n,m;
scanf("%d",&t);
for(int cse=; cse<=t; ++cse){
scanf("%d%d",&n,&m);
for(int i=; i<n; ++i){
for(int j=; j<m; ++j) scanf(" %c",&map[i][j]);
} int d0[][]={},d1[][]={},cnt=;
int rown=,coln=;
for(int i=; i<n; ++i){
for(int j=; j<m; ){
if(map[i][j]=='o'){
++rown;
while(j<m && map[i][j]!='#') d0[i][j]=rown,++j;
}else ++j;
}
}
for(int j=; j<m; ++j){
for(int i=; i<n; ){
if(map[i][j]=='o'){
++coln;
while(i<n && map[i][j]!='#') d1[i][j]=coln+rown,++i;
}else ++i;
}
} vs=; vt=rown+coln+; NV=vt+; NE=;
memset(head,-,sizeof(head));
for(int i=; i<=rown; ++i) addEdge(vs,i,);
for(int i=; i<=coln; ++i) addEdge(i+rown,vt,);
for(int i=; i<n; ++i){
for(int j=; j<m; ++j){
if(map[i][j]=='o' && d0[i][j] && d1[i][j]) addEdge(d0[i][j],d1[i][j],);
}
} printf("Case :%d\n",cse);
printf("%d\n",ISAP());
}
return ;
}