[bzoj1833][ZJOI2010]count 数字计数——数位dp

题目:

(传送门)[http://www.lydsy.com/JudgeOnline/problem.php?id=1833]

题解:

第一次接触数位dp,真的是恶心。

首先翻阅了很多很多一维dp,因为要处理前缀0,所以根本搞不懂。

查询了dalaolidaxin的博客,又查阅了资料:

初探数位dp

才完全弄懂这个题。

具体的,我们设

f[i][j][k]为考虑所有i位数,最高位为j数,之中k的数目。

我们可以得出方程:

\[f[i][j][k] = \sum f[i-1][l][k] (j!=k)
\]

\[f[i][j][k] = \sum f[i-1][l][k] + 10^{i-1} (j==k)
\]

我们对这个方程作出解释:

前一项非常好理解,后一项的话就是前(i-1)位数共有\(10^{i-1}\)个,对于其中每一个,我们都可以在前面加k。

这样我们预处理出来了f。

然后我们考虑对于n分块计算。

以n = 4321为例。

首先统计3位及以下的数,这些数字没有限制,直接加就好。

然后统计4位数。

对于一个4位数,我们一位一位向下考虑,如果最高位<k,直接加,如果=k,加上n+1

具体见代码。

代码

#include <cstdio>
#include <cstring>
using namespace std;
#define ll long long
const int N = 25;
struct node {
ll a[N];
node() { memset(a, 0, sizeof(a)); }
ll &operator[](const int &x) { return a[x]; }
};
node operator+(const node &x, const node &y) {
node tmp;
for (int i = 0; i <= 9; i++)
tmp.a[i] = x.a[i] + y.a[i];
return tmp;
}
int len, a[N];
ll pow[N];
node f[N][N];
void init(ll n) {
len = 0;
while (n) {
a[++len] = n % 10;
n /= 10;
}
for (int i = 0; i <= 9; i++)
f[1][i][i] = 1;
for (int i = 2; i <= 14; i++) {
for (int j = 0; j <= 9; j++) {
for (int k = 0; k <= 9; k++)
f[i][j] = f[i][j] + f[i - 1][k];
f[i][j][j] += pow[i - 1];
}
}
}
node calc(ll n) {
node ans;
if (!n)
return ans;
memset(f, 0, sizeof(f));
init(n);
//统计前len-1位
for (int i = 1; i <= len - 1; i++) {
for (int j = 1; j <= 9; j++) {
ans = ans + f[i][j];
}
}
//开始统计len位数
for (int i = 1; i <= a[len] - 1; i++)
ans = ans + f[len][i];
n %= pow[len - 1];
ans[a[len]] += n + 1; //对于每一个最高位都可以统计一发
for (int i = len - 1; i; i--) {
for (int j = 0; j < a[i]; j++)
ans = ans + f[i][j];
n %= pow[i - 1];
ans[a[i]] += n + 1;
}
return ans;
}
int main() {
pow[0] = 1;
for (int i = 1; i <= 14; i++)
pow[i] = pow[i - 1] * 10;
ll x, y;
scanf("%lld %lld", &x, &y);
node ans1 = calc(y), ans2 = calc(x - 1);
for (int i = 0; i <= 8; i++)
printf("%lld ", ans1[i] - ans2[i]);
printf("%lld\n", ans1[9] - ans2[9]);
return 0;
}
上一篇:7.3.5 Tomcat堆溢出分析(1)


下一篇:笔记react router 4(一)