I.进程:
II.多线程threading总结
threading用于提供线程相关的操作,线程是应用系统中工作的最小单位(cpu调用的最小单位).
Python当前版本的多线程没有实现优先级,线程组,线程也不能被停止,暂停,恢复,中断.
threading模块提供的类:
Thread,Lock,Rlock,Condition,Semaphore,Event,Timer,local.
threading 模块提供的常用方法:
threading.currentThread() :返回当前的线程变量.
threading.enumerate() :返回一个包含正在运行的线程的list.正在运行指线程启用后,结束前,不包含启动前和终止后的线程.
threading.activeCount() :返回正在运行的线程数量,与len(threading.enumerate())有相同的结果.
threading 模块提供的常量:
threading.TIMEOUT_MAX 设置threading全局超时时间.
Threading类
Thread是线程类,有两种使用方法,直接传入要运行的方法或从Thread继承并覆盖run():
import threading
import time
#方法一:将要执行的方法作为参数传给Thread的构造方法
def action(arg):
time.sleep(1)
print 'the arg is:%s\r' %arg for i in xrange(4):
t =threading.Thread(target=action,args=(i,))
t.start() print 'main thread end!' #方法二:从Thread继承,并重写run()
class MyThread(threading.Thread):
def __init__(self,arg):
super(MyThread, self).__init__()#注意:一定要显式的调用父类的初始化函数。
self.arg=arg
def run(self):#定义每个线程要运行的函数
time.sleep(1)
print 'the arg is:%s\r' % self.arg for i in xrange(4):
t =MyThread(i)
t.start() print 'main thread end!'
创建线程的两种方法
构建方法:
Thread(group=None,target=None,args=(),kwargs={})
group:线程组,目前还没有实现,库引用中提示必须是None;
target:要执行的方法;
name:线程名;
args/kwargs:要传入方法的参数.
实例方法:
isAlive(): 返回线程是否在运行.(启动后,终止前).
get/setName(name):获得/设置线程名.
start() :线程准备就绪,等待cpu调度(启动线程).
is/setNaemon(bool) :获得/设置时后台线程(默认前台线程False,在start之前设置)
join([timeout]): 阻塞当前上下文环境的线程,直到调用此方法的线程终止或到达指定的timeout(可选参数)。
Lock、Rlock类
由于线程之间随机调度:某线程可能在执行n条后,CPU接着执行其他线程。为了多个线程同时操作一个内存中的资源时不产生混乱,我们使用锁。
Lock(指令锁)是可用的最低级的同步指令。Lock处于锁定状态时,不被特定的线程拥有。Lock包含两种状态——锁定和非锁定,以及两个基本的方法。
可以认为Lock有一个锁定池,当线程请求锁定时,将线程至于池中,直到获得锁定后出池。池中的线程处于状态图中的同步阻塞状态。
RLock(可重入锁)是一个可以被同一个线程请求多次的同步指令。RLock使用了“拥有的线程”和“递归等级”的概念,处于锁定状态时,RLock被某个线程拥有。拥有RLock的线程可以再次调用acquire(),释放锁时需要调用release()相同次数。
可以认为RLock包含一个锁定池和一个初始值为0的计数器,每次成功调用 acquire()/release(),计数器将+1/-1,为0时锁处于未锁定状态。
简言之:Lock属于全局,Rlock属于线程。
构造方法:
Lock(),Rlock(),推荐使用Rlock()
实例方法:
acquire([timeout]): 尝试获得锁定。使线程进入同步阻塞状态。
release(): 释放锁。使用前线程必须已获得锁定,否则将抛出异常。
例子一(未使用锁):
#coding:utf-8
import threading
import time gl_num = 0 def show(arg):
global gl_num
time.sleep(1)
gl_num +=1
print gl_num for i in range(10):
t = threading.Thread(target=show, args=(i,))
t.start() print 'main thread stop'
未使用锁
main thread stop
12 3
4
568
9 910 Process finished with exit code 0 多次运行可能产生混乱。这种场景就是适合使用锁的场景。
运行结果
例子二(使用锁):
# coding:utf-8 import threading
import time gl_num = 0 lock = threading.RLock() # 调用acquire([timeout])时,线程将一直阻塞,
# 直到获得锁定或者直到timeout秒后(timeout参数可选)。
# 返回是否获得锁。
def Func():
lock.acquire()
global gl_num
gl_num += 1
time.sleep(1)
print gl_num
lock.release() for i in range(10):
t = threading.Thread(target=Func)
t.start()
使用Lock
1
2
3
4
5
6
7
8
9
10 Process finished with exit code 0
可以看出,全局变量在在每次被调用时都要获得锁,才能操作,因此保证了共享数据的安全性
运行结果
Lock对比Rlock
#coding:utf-8 import threading
lock = threading.Lock() #Lock对象
lock.acquire()
lock.acquire() #产生了死锁。
lock.release()
lock.release()
print lock.acquire() import threading
rLock = threading.RLock() #RLock对象
rLock.acquire()
rLock.acquire() #在同一线程内,程序不会堵塞。
rLock.release()
rLock.release()
Condition类
Condition(条件变量)通常与一个锁关联。需要在多个Contidion*享一个锁时,可以传递一个Lock/RLock实例给构造方法,否则它将自己生成一个RLock实例。
可以认为,除了Lock带有的锁定池外,Condition还包含一个等待池,池中的线程处于等待阻塞状态,直到另一个线程调用notify()/notifyAll()通知;得到通知后线程进入锁定池等待锁定。
构造方法:
Condition([lock/rlock])
实例方法:
acquire([timeout])/release(): 调用关联的锁的相应方法。
wait([timeout]): 调用这个方法将使线程进入Condition的等待池等待通知,并释放锁。使用前线程必须已获得锁定,否则将抛出异常。
notify(): 调用这个方法将从等待池挑选一个线程并通知,收到通知的线程将自动调用acquire()尝试获得锁定(进入锁定池);其他线程仍然在等待池中。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。
notifyAll(): 调用这个方法将通知等待池中所有的线程,这些线程都将进入锁定池尝试获得锁定。调用这个方法不会释放锁定。使用前线程必须已获得锁定,否则将抛出异常。
例子一:生产者消费者模型
# encoding: UTF-8
import threading
import time # 商品
product = None
# 条件变量
con = threading.Condition() # 生产者方法
def produce():
global product if con.acquire():
while True:
if product is None:
print 'produce...'
product = 'anything' # 通知消费者,商品已经生产
con.notify() # 等待通知
con.wait()
time.sleep(2) # 消费者方法
def consume():
global product if con.acquire():
while True:
if product is not None:
print 'consume...'
product = None # 通知生产者,商品已经没了
con.notify() # 等待通知
con.wait()
time.sleep(2) t1 = threading.Thread(target=produce)
t2 = threading.Thread(target=consume)
t2.start()
t1.start()
生产者消费者模型
produce...
consume...
produce...
consume...
produce...
consume...
produce...
consume...
produce...
consume... Process finished with exit code -1
程序不断循环运行下去。重复生产消费过程。
运行结果
例子二:生产者消费者模型
import threading
import time condition = threading.Condition()
products = 0 class Producer(threading.Thread):
def run(self):
global products
while True:
if condition.acquire():
if products < 10:
products += 1;
print "Producer(%s):deliver one, now products:%s" %(self.name, products)
condition.notify()#不释放锁定,因此需要下面一句
condition.release()
else:
print "Producer(%s):already 10, stop deliver, now products:%s" %(self.name, products)
condition.wait();#自动释放锁定
time.sleep(2) class Consumer(threading.Thread):
def run(self):
global products
while True:
if condition.acquire():
if products > 1:
products -= 1
print "Consumer(%s):consume one, now products:%s" %(self.name, products)
condition.notify()
condition.release()
else:
print "Consumer(%s):only 1, stop consume, products:%s" %(self.name, products)
condition.wait();
time.sleep(2) if __name__ == "__main__":
for p in range(0, 2):
p = Producer()
p.start() for c in range(0, 3):
c = Consumer()
c.start()
生产者消费者模型
例子三:
import threading alist = None
condition = threading.Condition() def doSet():
if condition.acquire():
while alist is None:
condition.wait()
for i in range(len(alist))[::-1]:
alist[i] = 1
condition.release() def doPrint():
if condition.acquire():
while alist is None:
condition.wait()
for i in alist:
print i,
condition.release() def doCreate():
global alist
if condition.acquire():
if alist is None:
alist = [0 for i in range(10)]
condition.notifyAll()
condition.release() tset = threading.Thread(target=doSet,name='tset')
tprint = threading.Thread(target=doPrint,name='tprint')
tcreate = threading.Thread(target=doCreate,name='tcreate')
tset.start()
tprint.start()
tcreate.start()
生产者消费者模型
Event类
Event(事件)是最简单的线程通信机制之一:一个线程通知事件,其他线程等待事件。Event内置了一个初始为False的标志,当调用set()时设为True,调用clear()时重置为 False。wait()将阻塞线程至等待阻塞状态。
Event其实就是一个简化版的 Condition。Event没有锁,无法使线程进入同步阻塞状态。
构造方法:
Event()
实例方法:
isSet(): 当内置标志为True时返回True。
set(): 将标志设为True,并通知所有处于等待阻塞状态的线程恢复运行状态。
clear(): 将标志设为False。
wait([timeout]): 如果标志为True将立即返回,否则阻塞线程至等待阻塞状态,等待其他线程调用set()。
例子一
# encoding: UTF-8
import threading
import time event = threading.Event() def func():
# 等待事件,进入等待阻塞状态
print '%s wait for event...' % threading.currentThread().getName()
event.wait() # 收到事件后进入运行状态
print '%s recv event.' % threading.currentThread().getName() t1 = threading.Thread(target=func)
t2 = threading.Thread(target=func)
t1.start()
t2.start() time.sleep(2) # 发送事件通知
print 'MainThread set event.'
event.set()
Thread-1 wait for event...
Thread-2 wait for event... #2秒后。。。
MainThread set event.
Thread-1 recv event.
Thread-2 recv event. Process finished with exit code 0
timer类
Timer(定时器)是Thread的派生类,用于在指定时间后调用一个方法。
构造方法:
Timer(interval, function, args=[], kwargs={})
interval: 指定的时间
function: 要执行的方法
args/kwargs: 方法的参数
实例方法:
Timer从Thread派生,没有增加实例方法。
例子一:
# encoding: UTF-8
import threading def func():
print 'hello timer!' timer = threading.Timer(5, func)
timer.start()
线程延迟5秒后执行。
local类
local是一个小写字母开头的类,用于管理 thread-local(线程局部的)数据。对于同一个local,线程无法访问其他线程设置的属性;线程设置的属性不会被其他线程设置的同名属性替换。
可以把local看成是一个“线程-属性字典”的字典,local封装了从自身使用线程作为 key检索对应的属性字典、再使用属性名作为key检索属性值的细节。
# encoding: UTF-8
import threading local = threading.local()
local.tname = 'main' def func():
local.tname = 'notmain'
print local.tname t1 = threading.Thread(target=func)
t1.start()
t1.join() print local.tname
notmain
main
运行结果
III.协程
协程
一.概念
1.进程
什么是进程?
进程是计算机力最小的资源分配单位
进程特点: 数据隔离,利用多核,数据不安全
2.多线程
什么是线程?
- 计算机(CPU)调度的最小单位
- 线程特点: 数据共享,GIL锁,数据不安全
- 线程是进程的必要组成单位
- 在一个进程中至少有一个线程
- 计算机(CPU)调度的最小单位
主线程:程序开始运行的时候,就产生了一个主线程来运行整个程序.由主程序开启的其他线程为子线程
各线程之间的工作:
异步的,数据共享的
GIL锁:Cpython解释器中有一把锁,所得是线程
线程:cpu调度的最小的单位
3.协程
协程是线程的一部分,是由用户来调度
协程特点:数据共享,数据安全
二.区别
1.进程多与线程比较
2.线程多与线程比较
三.进程_线程和协程在Python中的使用
异步: 同时做不止一件事
同步: 事情一件接着一件的做
阻塞: recv, recvfrom, accept, sleep, input
非阻塞:
IO操作:
网络相关的操作 recv/send connect/accept recvfrom/sendto
文件处理 print input json.dump/load logging
recv阻塞的原因: 等待数据来到我Python程序的内存里