题目如下:
Given an array of non-negative integers
arr
, you are initially positioned atstart
index of the array. When you are at indexi
, you can jump toi + arr[i]
ori - arr[i]
, check if you can reach to any index with value 0.Notice that you can not jump outside of the array at any time.
Example 1:
Input: arr = [4,2,3,0,3,1,2], start = 5 Output: true Explanation: All possible ways to reach at index 3 with value 0 are: index 5 -> index 4 -> index 1 -> index 3 index 5 -> index 6 -> index 4 -> index 1 -> index 3Example 2:
Input: arr = [4,2,3,0,3,1,2], start = 0 Output: true Explanation: One possible way to reach at index 3 with value 0 is: index 0 -> index 4 -> index 1 -> index 3Example 3:
Input: arr = [3,0,2,1,2], start = 2 Output: false Explanation: There is no way to reach at index 1 with value 0.Constraints:
1 <= arr.length <= 5 * 10^4
0 <= arr[i] < arr.length
0 <= start < arr.length
解题思路:DFS。从起点开始,每次把可以到达的位置标记成可达到即可。
代码如下:
class Solution(object): def canReach(self, arr, start): """ :type arr: List[int] :type start: int :rtype: bool """ reach = [0] * len(arr) queue = [start] reach[start] = 1 while len(queue) > 0: inx = queue.pop(0) if arr[inx] == 0 and reach[inx] == 1: return True next_inx = inx + arr[inx] if next_inx >= 0 and next_inx < len(arr) and reach[next_inx] == 0: queue.append(next_inx) reach[next_inx] = 1 next_inx = inx - arr[inx] if next_inx >= 0 and next_inx < len(arr) and reach[next_inx] == 0: queue.append(next_inx) reach[next_inx] = 1 return False