- 梯形积分法
基本思想是,将x轴上区间划分成n个等长的子区间。估计介于函数图像以及每个子区间内梯形区域的面积。
设子区间端点为xi和xi+1 ,长度h=xi+1 - xi, 同样的两条垂直线的长度为f(xi)和f(xi+1)
那么面积为:h/2[ f(xi) + f(xi+1) ]
n个区间是等分的,如果两条垂直线包围区域的边界分别为a和b,那么
h = (b-a) / n
- 设计并行程序的四个步骤
- 将问题的解决方案划分成多个任务
- 在任务间识别出需要的通信信道(识别出联系,是否需要交流)
- 将任务聚合成复合任务 --->减少通信
- 在核上分配复合任务
- 串行代码
/* Input a ,b , n*/ h = (b-a)/n approx = (f(a) + f(b))/2.0 for(i =1; i <= n-1; i++){ x_i = a + i * h; approx = h * approx } approx = h*approx
- 并行程序
伪代码:
Get a,b,n; h = (b-a)/n; local_n = n/comm_sz; local_a = a + my_rank * local_n * h; local_b = local_a + local_n*h; local_integral = Trap(local_a, local_b, local_n, h) /*Trap函数作用*/ if( my_rank != 0 ) Send local_integral to process 0; else /*my_rank == 0*/ total_integral = local_integral; for(proc = 1;proc < comm_sz; proc++){ Receive local_integral from proc; total_integral += local_integral; } if(my_rank == 0) print result;
int main(void){ int my_rank , comm_sz, n = 1024, local_n; double a = 0.0, b=3.0, h, local_a,local_b; double local_int,total_int; int source; MPI_Init(NULL,NULL); MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); MPI_Comm_size(MPI_COMM_WORLD, &comm_sz); h = (b-a)/n; local_n = n/comm_sz; local_a = a + my_rank * local_n * h; local_b = local_a +local_n * h; local_int = Trap(local_a , local_b , local_n, h ) if (my_rank != 0){ MPI_Send(&local_int , 1 , MPI_DOUBLE , 0, 0 , MPI_COMM_WORLD); }else{ total_int = local_int; for(source = 1 ; source < comm_sz ; source++){ MPI_Recv(&local_int, 1, MPI_DOUBLE, source, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE); total_int += local_int; } } if (my_rank == 0 ){ printf("With n = %d trapezoids, our estimate\n",n); printf("of the integral from %f to %f = %.15e\n",a,b,total_int); } MPI_Finalize(); return 0; }