TiDB 技术内幕(存储)

Key-Value

        作为保存数据的系统,首先要决定的是数据的存储模型,也就是数据以什么样的形式保存下来。TiKV 的选择是 Key-Value 模型,并且提供有序遍历方法。简单来讲,可以将 TiKV 看做一个巨大的 Map,其中 Key 和 Value 都是原始的 Byte 数组,在这个 Map 中,Key 按照 Byte 数组总的原始二进制比特位比较顺序排列。 大家这里需要对 TiKV 记住两点:

  1. 这是一个巨大的 Map,也就是存储的是 Key-Value pair
  2. 这个 Map 中的 Key-Value pair 按照 Key 的二进制顺序有序,也就是我们可以 Seek 到某一个 Key 的位置,然后不断的调用 Next 方法以递增的顺序获取比这个 Key 大的 Key-Value

这里的存储模型和 SQL 中的 Table 无关!

RocksDB

        任何持久化的存储引擎,数据终归要保存在磁盘上,TiKV 也不例外。但是 TiKV 没有选择直接向磁盘上写数据,而是把数据保存在 RocksDB 中,具体的数据落地由 RocksDB 负责。这个选择的原因是开发一个单机存储引擎工作量很大,特别是要做一个高性能的单机引擎,需要做各种细致的优化,而 RocksDB 是一个非常优秀的开源的单机存储引擎,可以满足我们对单机引擎的各种要求,而且还有 Facebook 的团队在做持续的优化,这样我们只投入很少的精力,就能享受到一个十分强大且在不断进步的单机引擎。当然,我们也为 RocksDB 贡献了一些代码,希望这个项目能越做越好。这里可以简单的认为 RocksDB 是一个单机的 Key-Value Map。

       底层LSM树将对数据的修改增量保存在内存中,达到指定大小限制之后批量把数据flush到磁盘中,磁盘中树定期可以做merge操作,合并成一棵大树,以优化性能。

Raft

        好了,万里长征第一步已经迈出去了,我们已经为数据找到一个高效可靠的本地存储方案。俗话说,万事开头难,然后中间难,最后结尾难。接下来我们面临一件更难的事情:如何保证单机失效的情况下,数据不丢失,不出错?简单来说,我们需要想办法把数据复制到多台机器上,这样一台机器挂了,我们还有其他的机器上的副本;复杂来说,我们还需要这个复制方案是可靠、高效并且能处理副本失效的情况。听上去比较难,但是好在我们有 Raft 协议。Raft 是一个一致性算法,它和 Paxos 等价,但是更加易于理解。Raft 的论文,感兴趣的可以看一下。本文只会对 Raft 做一个简要的介绍,细节问题可以参考论文。另外提一点,Raft 论文只是一个基本方案,严格按照论文实现,性能会很差,我们对 Raft 协议的实现做了大量的优化,具体的优化细节可参考tangliu 同学的《TiKV 源码解析系列 - Raft 的优化》这篇文章。

Raft 是一个一致性协议,提供几个重要的功能:

  1. Leader 选举
  2. 成员变更
  3. 日志复制

        TiKV 利用 Raft 来做数据复制,每个数据变更都会落地为一条 Raft 日志,通过 Raft 的日志复制功能,将数据安全可靠地同步到 Group 的多数节点中。

TiDB 技术内幕(存储)

        到这里我们总结一下,通过单机的 RocksDB,我们可以将数据快速地存储在磁盘上;通过 Raft,我们可以将数据复制到多台机器上,以防单机失效。数据的写入是通过 Raft 这一层的接口写入,而不是直接写 RocksDB。通过实现 Raft,我们拥有了一个分布式的 KV,现在再也不用担心某台机器挂掉了。

Region

        讲到这里,我们可以提到一个 非常重要的概念Region。这个概念是理解后续一系列机制的基础,请仔细阅读这一节。

        前面提到,我们将 TiKV 看做一个巨大的有序的 KV Map,那么为了实现存储的水平扩展,我们需要将数据分散在多台机器上。这里提到的数据分散在多台机器上和 Raft 的数据复制不是一个概念,在这一节我们先忘记 Raft,假设所有的数据都只有一个副本,这样更容易理解。

        对于一个 KV 系统,将数据分散在多台机器上有两种比较典型的方案:一种是按照 Key 做 Hash,根据 Hash 值选择对应的存储节点;另一种是分 Range,某一段连续的 Key 都保存在一个存储节点上。TiKV 选择了第二种方式,将整个 Key-Value 空间分成很多段,每一段是一系列连续的 Key,我们将每一段叫做一个 Region,并且我们会尽量保持每个 Region 中保存的数据不超过一定的大小(这个大小可以配置,目前默认是 64mb)。每一个 Region 都可以用 StartKey 到 EndKey 这样一个左闭右开区间来描述。

TiDB 技术内幕(存储)

 

        注意,这里的 Region 还是和 SQL 中的表没什么关系! 请各位继续忘记 SQL,只谈 KV。 将数据划分成 Region 后,我们将会做 两件重要的事情

  • 以 Region 为单位,将数据分散在集群中所有的节点上,并且尽量保证每个节点上服务的 Region 数量差不多
  • 以 Region 为单位做 Raft 的复制和成员管理

这两点非常重要,我们一点一点来说。

        先看第一点,数据按照 Key 切分成很多 Region,每个 Region 的数据只会保存在一个节点上面。我们的系统会有一个组件来负责将 Region 尽可能均匀的散布在集群中所有的节点上,这样一方面实现了存储容量的水平扩展(增加新的结点后,会自动将其他节点上的 Region 调度过来),另一方面也实现了负载均衡(不会出现某个节点有很多数据,其他节点上没什么数据的情况)。同时为了保证上层客户端能够访问所需要的数据,我们的系统中也会有一个组件记录 Region 在节点上面的分布情况,也就是通过任意一个 Key 就能查询到这个 Key 在哪个 Region 中,以及这个 Region 目前在哪个节点上。

        对于第二点,TiKV 是以 Region 为单位做数据的复制,也就是一个 Region 的数据会保存多个副本,我们将每一个副本叫做一个 Replica。Replica 之间是通过 Raft 来保持数据的一致,一个 Region 的多个 Replica 会保存在不同的节点上,构成一个 Raft Group。其中一个 Replica 会作为这个 Group 的 Leader,其他的 Replica 作为 Follower。所有的读和写都是通过 Leader 进行,再由 Leader 复制给 Follower。

TiDB 技术内幕(存储)

        我们以 Region 为单位做数据的分散和复制,就有了一个分布式的具备一定容灾能力的 KeyValue 系统,不用再担心数据存不下,或者是磁盘故障丢失数据的问题。这已经很 Cool,但是还不够完美,我们需要更多的功能。

MVCC

        很多数据库都会实现多版本控制(MVCC),TiKV 也不例外。设想这样的场景,两个 Client 同时去修改一个 Key 的 Value,如果没有 MVCC,就需要对数据上锁,在分布式场景下,可能会带来性能以及死锁问题。 TiKV 的 MVCC 实现是通过在 Key 后面添加 Version 来实现,简单来说,没有 MVCC 之前,可以把 TiKV 看做这样的:

   Key1 -> Value
   Key2 -> Value
   ……
   KeyN -> Value

有了 MVCC 之后,TiKV 的 Key 排列是这样的:

   Key1-Version3 -> Value
   Key1-Version2 -> Value
   Key1-Version1 -> Value
   ……
   Key2-Version4 -> Value
   Key2-Version3 -> Value
   Key2-Version2 -> Value
   Key2-Version1 -> Value
   ……
   KeyN-Version2 -> Value
   KeyN-Version1 -> Value
   ……

        注意,对于同一个 Key 的多个版本,我们把版本号较大的放在前面,版本号小的放在后面(回忆一下 Key-Value 一节我们介绍过的 Key 是有序的排列),这样当用户通过一个 Key + Version 来获取 Value 的时候,可以将 Key 和 Version 构造出 MVCC 的 Key,也就是 Key-Version。然后可以直接 Seek(Key-Version),定位到第一个大于等于这个 Key-Version 的位置。

事务

        TiKV 的事务采用的是 Percolator 模型,并且做了大量的优化。TiKV 的事务采用乐观锁,事务的执行过程中,不会检测写写冲突,只有在提交过程中,才会做冲突检测,冲突的双方中比较早完成提交的会写入成功,另一方会尝试重新执行整个事务。当业务的写入冲突不严重的情况下,这种模型性能会很好,比如随机更新表中某一行的数据,并且表很大。但是如果业务的写入冲突严重,性能就会很差,举一个极端的例子,就是计数器,多个客户端同时修改少量行,导致冲突严重的,造成大量的无效重试。

其他

        到这里,我们已经了解了 TiKV 的基本概念和一些细节,理解了这个分布式带事务的 KV 引擎的分层结构以及如何实现多副本容错。下一节会介绍如何在 KV 的存储模型之上,构建 SQL 层。

 

上一篇:HBase底层原理(多维度分析)


下一篇:Linux部署Kibana