Description
两人玩 \(nim\) 游戏,\(n\) 堆石子,每堆石子初始数量是不超过 \(m\) 的质数,那么后手必胜的方案有多少种。对 \(10^9+7\) 取模。
\(1\leq n\leq 10^9,2\leq m\leq 50000\)
Solution
我们记多项式 \(A(x)\) ,对于 \(x_i\) 若 \(i\leq m\) 且 \(i\) 为质数,那么 \(x_i\) 的系数为 \(1\) ,其余情况系数为 \(0\) 。
显然当 \(n=2\) 时,令多项式
\[C(x)=A(x)\oplus A(x)\]
其中 \(\oplus\) 为按位异或。那么 \(c_0\) 即为答案。
更多地, \(C(x)=A^n(x)\) ,那么 \(c_0\) 就是 \(n\) 堆石子的方案数。
\(FWT\) 乱搞一下即可。
Code
#include <bits/stdc++.h>
using namespace std;
const int mod = 1e9+7, N = 50000;
int isprime[N+5], prime[N+5], tot, n, m, len, inv2;
int f[N*2+5], a[N*2+5];
int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%mod;
b >>= 1, a = 1ll*a*a%mod;
}
return ans;
}
void get_prime() {
memset(isprime, 1, sizeof(isprime)); isprime[1] = 0;
for (int i = 2; i <= N; i++) {
if (isprime[i]) prime[++tot] = i;
for (int j = 1; j <= tot && i*prime[j] <= N; j++) {
isprime[i*prime[j]] = 0;
if (i%prime[j] == 0) break;
}
}
}
void FWT(int *A, int o) {
for (int i = 1; i < len; i <<= 1)
for (int j = 0; j < len; j += (i<<1))
for (int k = 0; k < i; k++) {
int x = A[k+j], y = A[k+j+i];
A[k+j] = (x+y)%mod, A[k+j+i] = (x-y+mod)%mod;
if (o == -1) A[k+j] = 1ll*A[k+j]*inv2%mod, A[k+j+i] = 1ll*A[k+j+i]*inv2%mod;
}
}
void work() {
inv2 = quick_pow(2, mod-2);
get_prime();
while (~scanf("%d%d", &n, &m)) {
memset(f, 0, sizeof(f));
for (int i = 1; i <= tot && prime[i] <= m; i++) f[prime[i]] = 1;
memset(a, 0, sizeof(a)); a[0] = 1;
for (len = 1; len <= m; len <<= 1);
FWT(a, 1), FWT(f, 1);
while (n) {
if (n&1) for (int i = 0; i < len; i++) a[i] = 1ll*a[i]*f[i]%mod;
for (int i = 0; i < len; i++) f[i] = 1ll*f[i]*f[i]%mod;
n >>= 1;
}
FWT(a, -1); printf("%d\n", a[0]);
}
}
int main() {work(); return 0; }