二叉搜索树 与 双向链表 代码(C++)
本文地址: http://blog.csdn.net/caroline_wendy
题目:输入一颗二叉搜索树, 将该二叉搜索树转换成一个排序的双向链表.
要求不能创建任何新的结点, 只能调整数中结点的指针的指向.
方法: 使用中序遍历每一个结点, 并进行连接, 即左子树指前, 右子树指后, 并保存前一个节点.
本程序包含算法原理, 测试程序, 及 输出.
代码:
/* * main.cpp * * Created on: 2014.6.12 * Author: Spike */ /*eclipse cdt, gcc 4.8.1*/ #include <iostream> #include <stack> #include <queue> using namespace std; struct BinaryTreeNode { int m_nValue; BinaryTreeNode* m_pLeft; BinaryTreeNode* m_pRight; }; void printTree (BinaryTreeNode* tree) { BinaryTreeNode* node = tree; std::queue<BinaryTreeNode*> temp1; std::queue<BinaryTreeNode*> temp2; temp1.push(node); while (!temp1.empty()) { node = temp1.front(); if (node->m_pLeft != NULL) { temp2.push(node->m_pLeft); } if (node->m_pRight != NULL) { temp2.push(node->m_pRight); } temp1.pop(); std::cout << node->m_nValue << " "; if (temp1.empty()) { std::cout << std::endl; temp1 = temp2; std::queue<BinaryTreeNode*> empty; std::swap(temp2, empty); } } } BinaryTreeNode* buildTree (const std::vector<int>& L) { if (L.empty()) return nullptr; std::queue<BinaryTreeNode*> parentQueue; std::queue<BinaryTreeNode*> childQueue; BinaryTreeNode* root = new BinaryTreeNode(); root->m_nValue = L[0]; parentQueue.push(root); std::size_t times = 1; while (times < L.size()) { BinaryTreeNode* parent = parentQueue.front(); parentQueue.pop(); BinaryTreeNode* lchild = new BinaryTreeNode(); lchild->m_nValue = L[times]; lchild->m_pLeft = nullptr; lchild->m_pRight = nullptr; ++times; parent->m_pLeft = lchild; childQueue.push(lchild); if (times == L.size()) break; BinaryTreeNode* rchild = new BinaryTreeNode(); rchild->m_nValue = L[times]; rchild->m_pLeft = nullptr; rchild->m_pRight = nullptr; ++times; parent->m_pRight = rchild; childQueue.push(rchild); if (parentQueue.empty()) { parentQueue = childQueue; std::queue<BinaryTreeNode*> empty; std::swap(childQueue, empty); } } return root; } void printList (BinaryTreeNode* pHeadOfList) { while (pHeadOfList != NULL && pHeadOfList->m_pRight != NULL) { std::cout << pHeadOfList->m_nValue << " "; pHeadOfList = pHeadOfList->m_pRight; } std::cout << pHeadOfList->m_nValue << " "; std::cout << std::endl; return; } void ConvertNode(BinaryTreeNode* pNode, BinaryTreeNode** pLastNodeInList) { if (pNode == NULL) return; BinaryTreeNode* pCurrent = pNode; if (pCurrent->m_pLeft != NULL) ConvertNode(pCurrent->m_pLeft, pLastNodeInList); pCurrent->m_pLeft = *pLastNodeInList; if (*pLastNodeInList != NULL) (*pLastNodeInList)->m_pRight = pCurrent; *pLastNodeInList = pCurrent; if (pCurrent->m_pRight != NULL) ConvertNode(pCurrent->m_pRight, pLastNodeInList); } BinaryTreeNode* Convert(BinaryTreeNode* pRootOfTree) { BinaryTreeNode* pLastNodeInList = NULL; ConvertNode(pRootOfTree, &pLastNodeInList); BinaryTreeNode* pHeadOfList = pLastNodeInList; while (pHeadOfList != NULL && pHeadOfList->m_pLeft != NULL) pHeadOfList = pHeadOfList->m_pLeft; return pHeadOfList; } int main (void) { std::vector<int> L = {10, 6, 14, 4, 8, 12, 16}; BinaryTreeNode* tree = buildTree(L); std::cout << "----Tree:----\n"; printTree(tree); BinaryTreeNode* list = Convert(tree); std::cout << "----List:----\n"; printList(list); return 0; }
----Tree:---- 10 6 14 4 8 12 16 ----List:---- 4 6 8 10 12 14 16