一、ASCII 码
我们知道,计算机内部,所有信息最终都是一个二进制值。每一个二进制位(bit)有0
和1
两种状态,因此八个二进制位就可以组合出256种状态,这被称为一个字节(byte)。也就是说,一个字节一共可以用来表示256种不同的状态,每一个状态对应一个符号,就是256个符号,从00000000
到11111111
。
上个世纪60年代,美国制定了一套字符编码,对英语字符与二进制位之间的关系,做了统一规定。这被称为 ASCII 码,一直沿用至今。
ASCII 码一共规定了128个字符的编码,比如空格SPACE
是32(二进制00100000
),大写的字母A
是65(二进制01000001
)。这128个符号(包括32个不能打印出来的控制符号),只占用了一个字节的后面7位,最前面的一位统一规定为0
。
ASCII控制字符
二进制 | 十进制 | 十六进制 | 缩写 | 可以显示的表示法 | 名称/意义 |
---|---|---|---|---|---|
0000 0000 | 0 | 00 | NUL | ␀ | 空字符(Null) |
0000 0001 | 1 | 01 | SOH | ␁ | 标题开始 |
0000 0010 | 2 | 02 | STX | ␂ | 本文开始 |
0000 0011 | 3 | 03 | ETX | ␃ | 本文结束 |
0000 0100 | 4 | 04 | EOT | ␄ | 传输结束 |
0000 0101 | 5 | 05 | ENQ | ␅ | 请求 |
0000 0110 | 6 | 06 | ACK | ␆ | 确认回应 |
0000 0111 | 7 | 07 | BEL | ␇ | 响铃 |
0000 1000 | 8 | 08 | BS | ␈ | 退格 |
0000 1001 | 9 | 09 | HT | ␉ | 水平定位符号 |
0000 1010 | 10 | 0A | LF | ␊ | 换行键 |
0000 1011 | 11 | 0B | VT | ␋ | 垂直定位符号 |
0000 1100 | 12 | 0C | FF | ␌ | 换页键 |
0000 1101 | 13 | 0D | CR | ␍ | 归位键 |
0000 1110 | 14 | 0E | SO | ␎ | 取消变换(Shift out) |
0000 1111 | 15 | 0F | SI | ␏ | 启用变换(Shift in) |
0001 0000 | 16 | 10 | DLE | ␐ | 跳出数据通讯 |
0001 0001 | 17 | 11 | DC1 | ␑ | 设备控制一(XON 启用软件速度控制) |
0001 0010 | 18 | 12 | DC2 | ␒ | 设备控制二 |
0001 0011 | 19 | 13 | DC3 | ␓ | 设备控制三(XOFF 停用软件速度控制) |
0001 0100 | 20 | 14 | DC4 | ␔ | 设备控制四 |
0001 0101 | 21 | 15 | NAK | ␕ | 确认失败回应 |
0001 0110 | 22 | 16 | SYN | ␖ | 同步用暂停 |
0001 0111 | 23 | 17 | ETB | ␗ | 区块传输结束 |
0001 1000 | 24 | 18 | CAN | ␘ | 取消 |
0001 1001 | 25 | 19 | EM | ␙ | 连接介质中断 |
0001 1010 | 26 | 1A | SUB | ␚ | 替换 |
0001 1011 | 27 | 1B | ESC | ␛ | 跳出 |
0001 1100 | 28 | 1C | FS | ␜ | 文件分割符 |
0001 1101 | 29 | 1D | GS | ␝ | 组群分隔符 |
0001 1110 | 30 | 1E | RS | ␞ | 记录分隔符 |
0001 1111 | 31 | 1F | US | ␟ | 单元分隔符 |
0111 1111 | 127 | 7F | DEL | ␡ | 删除 |
ASCII可显示字符
|
|
|
二、非 ASCII 编码
英语用128个符号编码就够了,但是用来表示其他语言,128个符号是不够的。比如,在法语中,字母上方有注音符号,它就无法用 ASCII 码表示。于是,一些欧洲国家就决定,利用字节中闲置的最高位编入新的符号。比如,法语中的é
的编码为130(二进制10000010
)。这样一来,这些欧洲国家使用的编码体系,可以表示最多256个符号。
但是,这里又出现了新的问题。不同的国家有不同的字母,因此,哪怕它们都使用256个符号的编码方式,代表的字母却不一样。比如,130在法语编码中代表了é
,在希伯来语编码中却代表了字母Gimel
(ג
),在俄语编码中又会代表另一个符号。但是不管怎样,所有这些编码方式中,0--127表示的符号是一样的,不一样的只是128--255的这一段。
至于亚洲国家的文字,使用的符号就更多了,汉字就多达10万左右。一个字节只能表示256种符号,肯定是不够的,就必须使用多个字节表达一个符号。比如,简体中文常见的编码方式是 GB2312,使用两个字节表示一个汉字,所以理论上最多可以表示 256 x 256 = 65536 个符号。
中文编码的问题需要专文讨论,这篇笔记不涉及。这里只指出,虽然都是用多个字节表示一个符号,但是GB类的汉字编码与后文的 Unicode 和 UTF-8 是毫无关系的。
三. Unicode
正如上一节所说,世界上存在着多种编码方式,同一个二进制数字可以被解释成不同的符号。因此,要想打开一个文本文件,就必须知道它的编码方式,否则用错误的编码方式解读,就会出现乱码。为什么电子邮件常常出现乱码?就是因为发信人和收信人使用的编码方式不一样。
可以想象,如果有一种编码,将世界上所有的符号都纳入其中。每一个符号都给予一个独一无二的编码,那么乱码问题就会消失。这就是 Unicode,就像它的名字都表示的,这是一种所有符号的编码。
Unicode 当然是一个很大的集合,现在的规模可以容纳100多万个符号。每个符号的编码都不一样,比如,U+0639
表示阿拉伯字母Ain
,U+0041
表示英语的大写字母A
,U+4E25
表示汉字严
。具体的符号对应表,可以查询unicode.org,或者专门的汉字对应表。
四、Unicode 的问题
需要注意的是,Unicode 只是一个符号集,它只规定了符号的二进制代码,却没有规定这个二进制代码应该如何存储。
比如,汉字严
的 Unicode 是十六进制数4E25
,转换成二进制数足足有15位(100111000100101
),也就是说,这个符号的表示至少需要2个字节。表示其他更大的符号,可能需要3个字节或者4个字节,甚至更多。
这里就有两个严重的问题,第一个问题是,如何才能区别 Unicode 和 ASCII ?计算机怎么知道三个字节表示一个符号,而不是分别表示三个符号呢?第二个问题是,我们已经知道,英文字母只用一个字节表示就够了,如果 Unicode 统一规定,每个符号用三个或四个字节表示,那么每个英文字母前都必然有二到三个字节是0
,这对于存储来说是极大的浪费,文本文件的大小会因此大出二三倍,这是无法接受的。
它们造成的结果是:1)出现了 Unicode 的多种存储方式,也就是说有许多种不同的二进制格式,可以用来表示 Unicode。2)Unicode 在很长一段时间内无法推广,直到互联网的出现。
五、UTF-8
互联网的普及,强烈要求出现一种统一的编码方式。UTF-8 就是在互联网上使用最广的一种 Unicode 的实现方式。其他实现方式还包括 UTF-16(字符用两个字节或四个字节表示)和 UTF-32(字符用四个字节表示),不过在互联网上基本不用。重复一遍,这里的关系是,UTF-8 是 Unicode 的实现方式之一。
UTF-8 最大的一个特点,就是它是一种变长的编码方式。它可以使用1~4个字节表示一个符号,根据不同的符号而变化字节长度。
UTF-8 的编码规则很简单,只有二条:
1)对于单字节的符号,字节的第一位设为0
,后面7位为这个符号的 Unicode 码。因此对于英语字母,UTF-8 编码和 ASCII 码是相同的。
2)对于n
字节的符号(n > 1
),第一个字节的前n
位都设为1
,第n + 1
位设为0
,后面字节的前两位一律设为10
。剩下的没有提及的二进制位,全部为这个符号的 Unicode 码。
下表总结了编码规则,字母x
表示可用编码的位。
Unicode符号范围 | UTF-8编码方式
(十六进制) | (二进制)
----------------------+---------------------------------------------
0000 0000-0000 007F | 0xxxxxxx
0000 0080-0000 07FF | 110xxxxx 10xxxxxx
0000 0800-0000 FFFF | 1110xxxx 10xxxxxx 10xxxxxx
0001 0000-0010 FFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
跟据上表,解读 UTF-8 编码非常简单。如果一个字节的第一位是0
,则这个字节单独就是一个字符;如果第一位是1
,则连续有多少个1
,就表示当前字符占用多少个字节。
下面,还是以汉字严
为例,演示如何实现 UTF-8 编码。
严
的 Unicode 是4E25
(100111000100101
),根据上表,可以发现4E25
处在第三行的范围内(0000 0800 - 0000 FFFF
),因此严
的 UTF-8 编码需要三个字节,即格式是1110xxxx 10xxxxxx 10xxxxxx
。然后,从严
的最后一个二进制位开始,依次从后向前填入格式中的x
,多出的位补0
。这样就得到了,严
的 UTF-8 编码是11100100 10111000 10100101
,转换成十六进制就是E4B8A5
。
六、Unicode 与 UTF-8 之间的转换
通过上一节的例子,可以看到严
的 Unicode码 是4E25
,UTF-8 编码是E4B8A5
,两者是不一样的。它们之间的转换可以通过程序实现。
Windows平台,有一个最简单的转化方法,就是使用内置的记事本小程序notepad.exe
。打开文件后,点击文件
菜单中的另存为
命令,会跳出一个对话框,在最底部有一个编码
的下拉条。
里面有四个选项:ANSI
,Unicode
,Unicode big endian
和UTF-8
。
1)ANSI
是默认的编码方式。对于英文文件是ASCII
编码,对于简体中文文件是GB2312
编码(只针对 Windows 简体中文版,如果是繁体中文版会采用 Big5 码)。
2)Unicode
编码这里指的是notepad.exe
使用的 UCS-2 编码方式,即直接用两个字节存入字符的 Unicode 码,这个选项用的 little endian 格式。
3)Unicode big endian
编码与上一个选项相对应。我在下一节会解释 little endian 和 big endian 的涵义。
4)UTF-8
编码,也就是上一节谈到的编码方法。
选择完"编码方式"后,点击"保存"按钮,文件的编码方式就立刻转换好了。
七、Little endian 和 Big endian
上一节已经提到,UCS-2 格式可以存储 Unicode 码(码点不超过0xFFFF
)。以汉字严
为例,Unicode 码是4E25
,需要用两个字节存储,一个字节是4E
,另一个字节是25
。存储的时候,4E
在前,25
在后,这就是 Big endian 方式;25
在前,4E
在后,这是 Little endian 方式。
这两个古怪的名称来自英国作家斯威夫特的《格列佛游记》。在该书中,小人国里爆发了内战,战争起因是人们争论,吃鸡蛋时究竟是从大头(Big-endian)敲开还是从小头(Little-endian)敲开。为了这件事情,前后爆发了六次战争,一个皇帝送了命,另一个皇帝丢了王位。
第一个字节在前,就是"大头方式"(Big endian),第二个字节在前就是"小头方式"(Little endian)。
那么很自然的,就会出现一个问题:计算机怎么知道某一个文件到底采用哪一种方式编码?
Unicode 规范定义,每一个文件的最前面分别加入一个表示编码顺序的字符,这个字符的名字叫做"零宽度非换行空格"(zero width no-break space),用FEFF
表示。这正好是两个字节,而且FF
比FE
大1
。
如果一个文本文件的头两个字节是FE FF
,就表示该文件采用大头方式;如果头两个字节是FF FE
,就表示该文件采用小头方式。
八、实例
下面,举一个实例。
打开"记事本"程序notepad.exe
,新建一个文本文件,内容就是一个严
字,依次采用ANSI
,Unicode
,Unicode big endian
和UTF-8
编码方式保存。
然后,用文本编辑软件UltraEdit 中的"十六进制功能",观察该文件的内部编码方式。
1)ANSI:文件的编码就是两个字节D1 CF
,这正是严
的 GB2312 编码,这也暗示 GB2312 是采用大头方式存储的。
2)Unicode:编码是四个字节FF FE 25 4E
,其中FF FE
表明是小头方式存储,真正的编码是4E25
。
3)Unicode big endian:编码是四个字节FE FF 4E 25
,其中FE FF
表明是大头方式存储。
4)UTF-8:编码是六个字节EF BB BF E4 B8 A5
,前三个字节EF BB BF
表示这是UTF-8编码,后三个E4B8A5
就是严
的具体编码,它的存储顺序与编码顺序是一致的。
九、延伸阅读
- The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets(关于字符集的最基本知识)
- 谈谈Unicode编码
- RFC3629:UTF-8, a transformation format of ISO 10646(如果实现UTF-8的规定)
(完)