Cache

package com.shujia.spark.core

import org.apache.spark.rdd.RDD
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{SparkConf, SparkContext}

object Demo15Cache {

  def main(args: Array[String]): Unit = {

    val conf: SparkConf = new SparkConf()
      .setMaster("local")
      .setAppName("cache")

    val sc = new SparkContext(conf)


    val studentRDD: RDD[String] = sc.textFile("data/students.txt")


    val studentsRDD: RDD[(String, String, Int, String, String)] = studentRDD.map(student => {

      println("studentsRDD处理")

      val split: Array[String] = student.split(",")
      val id: String = split(0)
      val name: String = split(1)
      val age: Int = split(2).toInt
      val gender: String = split(3)
      val clazz: String = split(4)

      (id, name, age, gender, clazz)
    })


    /**
      * rdd中默认不报错数据,如果对同一个rdd使用多次,这个rdd会处理多次
      *
      * 持久化级别选择
      * 1、如果数据量不大,内存充足----> MEMORY_ONLY
      * 2、如果数据超过内存限制 ---> MEMORY_AND_DISK_SER  (不管压缩不压缩,放内存中都比放磁盘上快,)
      *
      * 压缩---> 体积小,压缩和解压需要时间
      *
      *
      */

    //MEMORY_ONLY 默认是MEMORY_ONLY
    //    studentsRDD.cache()
    studentsRDD.persist(StorageLevel.MEMORY_AND_DISK_SER)


    //班级人数
    val clazzNum: RDD[(String, Int)] = studentsRDD.map(stu => (stu._5, 1)).reduceByKey(_ + _)

    clazzNum.foreach(println)

    //性别的人数
    val genderNum: RDD[(String, Int)] = studentsRDD.map(stu => (stu._4, 1)).reduceByKey(_ + _)

    genderNum.foreach(println)


    //性别人数
    val ageNumRDD: RDD[(Int, Int)] = studentsRDD.map(stu => (stu._3, 1)).reduceByKey(_ + _)
    ageNumRDD.foreach(println)
  }

}

 

上一篇:SparkCore中RDD开发API边缘_广播变量【broadCast】的使用案例


下一篇:剑指 Offer 16. 数值的整数次方