52、Spark Streaming之输入DStream之基础数据源以及基于HDFS的实时wordcount程序

一、概述

1、Socket:之前的wordcount例子,已经演示过了,StreamingContext.socketTextStream()

2、HDFS文件
基于HDFS文件的实时计算,其实就是,监控一个HDFS目录,只要其中有新文件出现,就实时处理。相当于处理实时的文件流。 streamingContext.fileStream<KeyClass, ValueClass, InputFormatClass>(dataDirectory)
streamingContext.fileStream[KeyClass, ValueClass, InputFormatClass](dataDirectory) Spark Streaming会监视指定的HDFS目录,并且处理出现在目录中的文件。要注意的是,所有放入HDFS目录中的文件,都必须有相同的格式;
必须使用移动或者重命名的方式,将文件移入目录;一旦处理之后,文件的内容即使改变,也不会再处理了;基于HDFS文件的数据源是没有
Receiver的,因此不会占用一个cpu core。

二、代码实现

1、java实现

package cn.spark.study.streaming;

import java.util.Arrays;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext; import scala.Tuple2; public class HDFSWordCount {
public static void main(String[] args) {
SparkConf conf = new SparkConf()
.setMaster("local[2]")
.setAppName("WordCount"); JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(3)); // 首先,使用JavaStreamingContext的textFileStream()方法,针对HDFS目录创建输入数据流
JavaDStream<String> lines = jssc.textFileStream("hdfs://spark1:9000/wordcount_dir"); // 执行wordcount操作
JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() { private static final long serialVersionUID = 1L; @Override
public Iterable<String> call(String line) throws Exception {
return Arrays.asList(line.split(" "));
}
}); JavaPairDStream<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<String, Integer>(word, 1);
}
}); JavaPairDStream<String, Integer> wordcounts = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
}); wordcounts.print(); jssc.start();
jssc.awaitTermination();
jssc.close();
}
} ###运行脚本
[root@spark1 streaming]# cat hdfswordcount.sh
/usr/local/spark-1.5.1-bin-hadoop2.4/bin/spark-submit \
--class cn.spark.study.streaming.HDFSWordCount \
--num-executors 3 \
--driver-memory 100m \
--executor-memory 100m \
--executor-cores 3 \
--files /usr/local/hive/conf/hive-site.xml \
--driver-class-path /usr/local/hive/lib/mysql-connector-java-5.1.17.jar \
/usr/local/spark-study/java/streaming/saprk-study-java-0.0.1-SNAPSHOT-jar-with-dependencies.jar \ ##此时打包上传,启动运行脚本,他就会一直监视hdfs的指定目录 ##把准备好的文件上传到hdfs,程序会马上读取到,并统计出来
hdfs dfs -mkdir /wordcount_dir
hdfs dfs -put t1.txt /wordcount_dir/t1.txt

2、scala实现

package cn.spark.study.streaming

import org.apache.spark.SparkConf
import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.Seconds object HDFSWordCount {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setMaster("local[2]").setAppName("HDFSWordCount")
val ssc = new StreamingContext(conf, Seconds(3)) val lines = ssc.textFileStream("hdfs://spark1:9000/wordcount_dir")
val words = lines.flatMap(_.split(" "))
val pairs = words.map(word => (word, 1))
val wordCounts = pairs.reduceByKey(_ + _)
wordCounts.print() ssc.start()
ssc.awaitTermination() }
} ##运行脚本
[root@spark1 streaming]# cat hdfswordcount.sh
/usr/local/spark-1.5.1-bin-hadoop2.4/bin/spark-submit \
--class cn.spark.study.streaming.HDFSWordCount \
--num-executors 3 \
--driver-memory 100m \
--executor-memory 100m \
--executor-cores 3 \
--files /usr/local/hive/conf/hive-site.xml \
--driver-class-path /usr/local/hive/lib/mysql-connector-java-5.1.17.jar \
/usr/local/spark-study/scala/streaming/spark-study-scala.jar \ ##打包--上传,运行脚本 ##程序会监控着hdfs目录,此时上传一个新文件到hdfs,程序会马上读取到并统计出来
hdfs dfs -put t2.txt /wordcount_dir/t2.txt
上一篇:位(Bit)与字节(Byte)


下一篇:聚类算法简单总结