一文读懂PostgreSQL-12分区表

一、初识分区表

 

         通常情况下,扫描一个大表会很慢。 例如,如果一个订单表orders的数据量是50G,统计某个州范围内订单的平均额度,往往会消耗几分钟的时间。

  select avg(total_amount) from orders where state_code=1;

         如果能够把大表分拆成小表,查询数据的时猴,只扫描数据所属的小表,就能大大降低扫描时间,提高查询速度。

         PostgreSQL的分区表(Table Partitioning)可以用来解决此类问题。解决方式是:创建一个表orders,作为分区表(partitionedtable),再创建50个分区(partition),orders_1, orders_2, …, orders_50, 每一个分区对应一个州的数据,分区的数据量平均是1G。分区表和分区都是表。本例中,这50分区联合在一起,组成分区表orders。在执行查询语句(如下)的时候:

select avg(total_amount) from orders where state_code=1;

 

         PostgreSQL通过对执行语句的分析处理,最终把扫描的任务定位在分区order_1上,把查询语句转换成下面的语句,其他分区根本不需要扫描。

select avg(total_amount) from orders_1;


二、PostgreSQL分区表应用举例

 

         温度采集在物联网应用中非常普遍,通常一个系统中部署大量的温度传感器,传感器按照设定的采集频率把温度数据发送到服务器。 下面是一个温度采集的例子,表temperature_sensor_data,用于保存温度传感器采集的温度数据。 如果有10万个传感器,每隔一小时采集一次数据,则每一个月会产生3.7G的数据,一年会产生大约43G的数据。

         对于这样量级的数据,通常需要采用特殊的处理方式。一种可能的方式是:按照月创建分区,数据按照所属的月份,被存储到较小的分区。

 

2.1 创建分区表

         在下面的例子中,创建了分区表temperature_sensor_data和12分区。分区表代表2017年全年的数据,而每一个分区代表单月的数据。

droptableifexists temperature_sensor_data ;CREATETABLEtemperature_sensor_data (    sensor_id      integer   NOTNULL,    timestamp      timestampNOTNULL,     temperature    decimal(5,2) NOTNULL)  PARTITION BY RANGE (timestamp);droptableifexists temperature_sensor_data_2017_1;CREATETABLEtemperature_sensor_data_2017_1    PARTITION OF temperature_sensor_data    FORVALUESFROM (‘2017-01-01‘) TO (‘2017-02-01‘);droptableifexists temperature_sensor_data_2017_2;CREATETABLEtemperature_sensor_data_2017_2    PARTITION OF temperature_sensor_data    FORVALUESFROM (‘2017-02-01‘) TO (‘2017-03-01‘);droptableifexists temperature_sensor_data_2017_3;CREATETABLEtemperature_sensor_data_2017_3    PARTITION OF temperature_sensor_data    FORVALUESFROM (‘2017-03-01‘) TO (‘2017-04-01‘);droptableifexists temperature_sensor_data_2017_4;CREATETABLEtemperature_sensor_data_2017_4    PARTITION OF temperature_sensor_data    FORVALUESFROM (‘2017-04-01‘) TO (‘2017-05-01‘);droptableifexists temperature_sensor_data_2017_5;CREATETABLEtemperature_sensor_data_2017_5    PARTITION OF temperature_sensor_data    FORVALUESFROM (‘2017-05-01‘) TO (‘2017-06-01‘);droptableifexists temperature_sensor_data_2017_6;CREATETABLEtemperature_sensor_data_2017_6    PARTITION OF temperature_sensor_data    FORVALUESFROM (‘2017-06-01‘) TO (‘2017-07-01‘);droptableifexists temperature_sensor_data_2017_7;CREATETABLEtemperature_sensor_data_2017_7    PARTITION OF temperature_sensor_data    FORVALUESFROM (‘2017-07-01‘) TO (‘2017-08-01‘);droptableifexists temperature_sensor_data_2017_8;CREATETABLEtemperature_sensor_data_2017_8    PARTITION OF temperature_sensor_data    FORVALUESFROM (‘2017-08-01‘) TO (‘2017-09-01‘);droptableifexists temperature_sensor_data_2017_9;CREATETABLEtemperature_sensor_data_2017_9    PARTITION OF temperature_sensor_data    FORVALUESFROM (‘2017-09-01‘) TO (‘2017-10-01‘);droptableifexists temperature_sensor_data_2017_10;CREATETABLEtemperature_sensor_data_2017_10    PARTITION OF temperature_sensor_data    FORVALUESFROM (‘2017-10-01‘) TO (‘2017-11-01‘);droptableifexists temperature_sensor_data_2017_11;CREATETABLEtemperature_sensor_data_2017_11    PARTITION OF temperature_sensor_data    FORVALUESFROM (‘2017-11-01‘) TO (‘2017-12-01‘);droptableifexists temperature_sensor_data_2017_12;CREATETABLEtemperature_sensor_data_2017_12    PARTITION OF temperature_sensor_data    FORVALUESFROM (‘2017-12-01‘) TO (‘2018-01-01‘);

2.2 模拟加载数据

  • 100000个传感器

  • 每隔1小时采集一次数据

  • 总共12个月

with   ids as ( select generate_series(1,100000) as sensor_id ),      times as ( SELECT  generate_series( ‘2017-01-01 00:00:00‘::timestamp,‘2017-12-31 23:59:00‘, ‘1 hour‘ ) as timestamp ),   samples as ( select sensor_id, timestamp, random()*100::decimal as temperature from ids full join times on 1=1 )insert into  temperature_sensor_data select sensor_id, timestamp, round(temperature::decimal,2) as temperature from samples;postgres=# \d+                                         List of relations Schema |              Name               |       Type        |    Owner    |  Size   | Description --------+---------------------------------+-------------------+-------------+---------+------------- public | temperature_sensor_data         | partitioned table | postgres | 0 bytes |  public | temperature_sensor_data_2017_1  | table             | postgres | 3703 MB |  public | temperature_sensor_data_2017_10 | table             | postgres | 3703 MB |  public | temperature_sensor_data_2017_11 | table             | postgres | 3584 MB |  public | temperature_sensor_data_2017_12 | table             | postgres | 3703 MB |  public | temperature_sensor_data_2017_2  | table             | postgres | 3345 MB |  public | temperature_sensor_data_2017_3  | table             | postgres | 3703 MB |  public | temperature_sensor_data_2017_4  | table             | postgres | 3584 MB |  public | temperature_sensor_data_2017_5  | table             | postgres | 3703 MB |  public | temperature_sensor_data_2017_6  | table             | postgres | 3584 MB |  public | temperature_sensor_data_2017_7  | table             | postgres | 3703 MB |  public | temperature_sensor_data_2017_8  | table             | postgres | 3703 MB |  public | temperature_sensor_data_2017_9  | table             | postgres | 3584 MB | (13 rows)

 

2.3 统计1月份的平均温度

 

  • 1月份的数据量是3703M

  • 耗时大约33秒

postgres=#selectavg(temperature) from temperature_sensor_data wheretimestampbetween  ‘2017-01-01 00:00:00‘and‘2017-01-0123:59:00‘;         avg        --------------------- 50.0171680480000000(1 row)Time: 33305.055 ms(00:33.305)postgres=#

2.4 使用一个大表,不使用分区表的查询结果

 

  • 单个表数据量是43G

  • 耗时大约7分51秒

postgres=# \d+                              List of relations Schema |          Name           | Type  |    Owner    | Size  | Description --------+-------------------------+-------+-------------+-------+------------- public | temperature_sensor_data | table | postgres | 43 GB | (1 row)postgres=# select avg(temperature) from temperature_sensor_data where timestamp between  ‘2017-01-01 00:00:00‘ and ‘2017-01-01 23:59:00‘;         avg         --------------------- 50.0010354000000000(1 row)
Time: 471373.514 ms (07:51.374)

 三、使用DeclarativePartitioning定义分区表

 

         PostgreSQL从版本10开始,支持DeclarativePartitioning功能,就是使用create table语句定义分区表和分区。

         创建分区表的方式是:create table tablename (…) partition by (…)

         创建分区的方式是: create table partitionname partition oftablename for values (…);

         其中partition by (…)定义来分区表根据哪些列来分区,使用什么算法;for values (…)定义一个分区内,落入该分区的数据的取值范围。

         目前PostgreSQL12提供来3种分区算法:

  • partition by range(…),pg10引入

  • partition by list(…),pg10引入

  • parition by hash(…),pg11引入

 

3.1 使用PARTITION BY RANGE方式定义分区

         在创建分区表的时候,需要使用PARTITION BY指明该表是一个分区表,并且定义分区的方式。 以下是PostgreSQL官方文档中一个例子:

         该例子中,根据logdate字段做分区,使用RANGE方式。分区表measurement对应3个分区:measurement_y2006m02,measurement_y2006m03,measurement_def。其中measurement_def是默认分区。

         在插入数据的时候,如果logdate的取值在2016年2月份,则数据插入到分区measurement_y2006m02;如果logdate的取值在2016年3月份,则数据被插入到分区measurement_y2006m03;其它的数据,插入到默认分区measurement_def。

CREATE TABLE measurement (    city_id         int not null,    logdate         date not null,    peaktemp        int,    unitsales       int) PARTITION BY RANGE (logdate);CREATE TABLE measurement_y2006m02 PARTITION OF measurement    FOR VALUES FROM (‘2006-02-01‘) TO (‘2006-03-01‘);
CREATE TABLE measurement_y2006m03 PARTITION OF measurement FOR VALUES FROM (‘2006-03-01‘) TO (‘2006-04-01‘);
CREATE TABLE measurement_def PARTITION OF measurement DEFAULT;

          查询数据的时候,PostgreSQL能够根据合适的过滤条件,选择正确的分区做查询;如果没有适当的过滤条件,则扫描所有分区。

postgres=# explain select * from measurement where logdate=‘2006-02-10‘;                              QUERY PLAN                              ---------------------------------------------------------------------- Seq Scan on measurement_y2006m02  (cost=0.00..33.12 rows=9 width=16)   Filter: (logdate = ‘2006-02-10‘::date)(2 rows)

postgres=# explain select * from measurement; QUERY PLAN ------------------------------------------------------------------------------- Append (cost=0.00..113.25 rows=5550 width=16) -> Seq Scan on measurement_y2006m02 (cost=0.00..28.50 rows=1850 width=16) -> Seq Scan on measurement_y2006m03 (cost=0.00..28.50 rows=1850 width=16) -> Seq Scan on measurement_def (cost=0.00..28.50 rows=1850 width=16)(4 rows)

 

3.2 使用PARTITION BY LIST(column )定义分区

           列的取值范围值是一个小的集合,类似编程中的枚举概念。当列值等于某个特定值的时候,落入指定的分区。

           下面的例子中,分区表sale_order包含3个分区:

europe_order,asia_order,default_order。当列country等于‘germany‘或者‘sweden‘时,数据落入分区europe_order;当country的值等于india或japan时,行落入分区asia_order;当country等于其它值时,则行数据落入分区default_order。

CREATE TABLE sale_order(  order_no    integer,     store_no    integer,  country     varchar(20),  date        date,  amount      decimal(5,2)) PARTITION BY LIST(country);
CREATE TABLE europe_order PARTITION OF sale_order FOR VALUES IN (‘germany‘, ‘sweden‘);
CREATE TABLE asia_order PARTITION OF sale_order FOR VALUES IN (‘india‘, ‘japan‘);
CREATE TABLE default_order PARTITION OF sale_order DEFAULT;

            查询数据的时候,PostgreSQL能够根据合适的过滤条件,选择正确的分区做查询;如果没有适当的过滤条件,则扫描所有分区。

postgres=#explain select * from sale_order where country=‘india‘;                         QUERY PLAN                         ------------------------------------------------------------ Seq Scan on asia_order (cost=0.00..19.25 rows=4 width=82)   Filter: ((country)::text = ‘india‘::text)(2 rows)postgres=#explain select * from sale_order;                              QUERY PLAN                               ----------------------------------------------------------------------- Append (cost=0.00..63.30 rows=2220 width=82)   -> Seq Scan on europe_order  (cost=0.00..17.40 rows=740 width=82)   -> Seq Scan on asia_order  (cost=0.00..17.40 rows=740 width=82)   -> Seq Scan on default_order  (cost=0.00..17.40 rows=740 width=82)(4 rows)

3.3 使用PARTITION BY HASH( column )定义分区

           对列的值做哈希,哈希值把数据分割成几个分区。

           下面的例子中,分区表orders包含4个分区:orders_p1,orders_p2,orders_p3,orders_p4。

         插入数据时,对列o_w_id取余,结果等于0,1,2,3,行数据分别落入分区orders_p1, orders_p2, orders_p3,orders_p4。

createtableorders (  o_w_id      integer     notnull,  o_d_id      integer     notnull,  o_id        integer     notnull,  o_c_id      integer,  o_carrier_id integer,  o_ol_cnt    integer,  o_all_local integer,  o_entry_d   timestamp)PARTITIONBY HASH ( o_w_id );CREATETABLEorders_p1 PARTITION OF orders    FORVALUESWITH (MODULUS 4, REMAINDER 0);CREATETABLEorders_p2 PARTITION OF orders    FORVALUESWITH (MODULUS 4, REMAINDER 1);CREATETABLEorders_p3 PARTITION OF orders    FORVALUESWITH (MODULUS 4, REMAINDER 2);CREATETABLEorders_p4 PARTITION OF orders    FORVALUESWITH (MODULUS 4, REMAINDER 3);

3.4 分区的其它特性

  • 可以在分区表上建立索引,相应的所有分区都能自动建立索引;或者,可以为分区单独建立索引。

  • 可以根据需要,卸载或这增加一个分区。

  • 分区可以指定单独的表空间,能充分利用多个磁盘。

  • 分区可以指向一个PG外表,即FDW表。

  • 分区表可以根据多个列的值来分区。

  • 分区可以再次分区。

四、使用表继承(Inheritance)方式定义分区表

            分区表也可以使用继承的方式来使用。该方式早在PostgreSQL8就支持了。创建方式举例如下:

  • 1. 创建一个普通表measurement

CREATE TABLE measurement (    city_id         int not null,    logdate         date not null,    peaktemp        int,    unitsales       int);
  • 2. 创建子表,继承自measurement

    • 每个子表的check约束是为了确保字表只运行符合条件的数据插入。

 

CREATE TABLE measurement_y2006m02 (    CHECK ( logdate >= DATE ‘2006-02-01‘ AND logdate < DATE ‘2006-03-01‘ )) INHERITS (measurement);
CREATE TABLE measurement_y2006m03 ( CHECK ( logdate >= DATE ‘2006-03-01‘ AND logdate < DATE ‘2006-04-01‘ )) INHERITS (measurement);
CREATE TABLE measurement_y2007m12 ( CHECK ( logdate >= DATE ‘2007-12-01‘ AND logdate < DATE ‘2008-01-01‘ )) INHERITS (measurement);
CREATE TABLE measurement_y2008m01 ( CHECK ( logdate >= DATE ‘2008-01-01‘ AND logdate < DATE ‘2008-02-01‘ )) INHERITS (measurement);
  • 3. 创建函数和触发器,用于把数据插入到相应的分区。

CREATE OR REPLACE FUNCTION measurement_insert_trigger()RETURNS TRIGGER AS $$BEGIN    IF ( NEW.logdate >= DATE ‘2006-02-01‘ AND         NEW.logdate < DATE ‘2006-03-01‘ ) THEN        INSERT INTO measurement_y2006m02 VALUES (NEW.*);    ELSIF ( NEW.logdate >= DATE ‘2006-03-01‘ AND            NEW.logdate < DATE ‘2006-04-01‘ ) THEN        INSERT INTO measurement_y2006m03 VALUES (NEW.*);    ELSIF ( NEW.logdate >= DATE ‘2007-12-01‘ AND            NEW.logdate < DATE ‘2008-01-01‘ ) THEN        INSERT INTO measurement_y2007m12 VALUES (NEW.*);    ELSIF ( NEW.logdate >= DATE ‘2008-01-01‘ AND            NEW.logdate < DATE ‘2008-02-01‘ ) THEN        INSERT INTO measurement_y2008m01 VALUES (NEW.*);    ELSE        RAISE EXCEPTION ‘Date out of range.  Fix the measurement_insert_trigger() function!‘;    END IF;    RETURN NULL;END;$$LANGUAGE plpgsql;
CREATE TRIGGER insert_measurement_trigger BEFORE INSERT ON measurement    FOR EACH ROW EXECUTE FUNCTION measurement_insert_trigger();
  • 4. 插入数据

插入4条数据,应该分别落入4个子表。

insertinto measurement    values (1, ‘2006-02-10‘, 10, 1),          (1, ‘2006-03-10‘, 10, 1),          (1, ‘2007-12-10‘, 10, 1),          (1, ‘2008-01-10‘, 10, 1);
  • 5. 查询数据

postgres=#select * from measurement; city_id | logdate   | peaktemp | unitsales ---------+------------+----------+-----------       1 | 2006-02-10 |       10 |         1       1 | 2006-03-10 |       10 |         1       1 | 2007-12-10 |       10 |         1       1 | 2008-01-10 |       10 |         1(4 rows)postgres=#select * from measurement_y2006m02; city_id | logdate   | peaktemp | unitsales ---------+------------+----------+-----------       1 | 2006-02-10 |       10 |         1(1 row)postgres=#select * from measurement_y2006m03; city_id | logdate   | peaktemp | unitsales ---------+------------+----------+-----------       1 | 2006-03-10 |       10 |         1(1 row)postgres=#select * from measurement_y2007m12; city_id | logdate   | peaktemp | unitsales ---------+------------+----------+-----------       1 | 2007-12-10 |       10 |         1(1 row)postgres=#select * from measurement_y2008m01 ; city_id | logdate   | peaktemp | unitsales ---------+------------+----------+-----------       1 | 2008-01-10 |       10 |         1(1 row)postgres=#explain select * from measurement;                                  QUERYPLAN                                   ------------------------------------------------------------------------------- Append (cost=0.00..151.00 rows=7401 width=16)   -> Seq Scan on measurement  (cost=0.00..0.00 rows=1 width=16)   -> Seq Scan on measurement_y2006m02  (cost=0.00..28.50 rows=1850 width=16)   -> Seq Scan on measurement_y2006m03  (cost=0.00..28.50 rows=1850 width=16)   -> Seq Scan on measurement_y2007m12  (cost=0.00..28.50 rows=1850 width=16)   -> Seq Scan on measurement_y2008m01  (cost=0.00..28.50 rows=1850 width=16)(6 rows)postgres=#explain select * from measurement where logdate=‘2007-01-10‘;                         QUERY PLAN                         ------------------------------------------------------------ Seq Scan on measurement (cost=0.00..0.00 rows=1 width=16)   Filter: (logdate = ‘2007-01-10‘::date)(2 rows)

 

原文请点击下方“阅读原文”获取,PC端阅读效果更佳!

一文读懂PostgreSQL-12分区表

上一篇:Docker mysql定时备份


下一篇:【转】删除注册、连接失败的sqlserver服务器