AOV网络拓扑排序

这个算法,主要是为输出一个无环图的拓扑序列

算法思想:

主要依赖一个栈,用来存放没有入度的节点,每次读取栈顶元素,并将栈顶元素的后继节点入度减一,如果再次出现入度为零的节点,就加入到栈中。参考《大话数据结构》,写下下面完整代码,并发现,其中程序的进行,出现错误。v6执行完,应该执行v9,因为此时v9是站顶元素,并不是v0.

算法流程:

int topGraph(graph g){
EdgeNode *e;
int i,k,gettop;
int top = ;
int count = ;
int *stack;
stack = (int *)malloc(g->numVertexes * sizeof(int));
for(i=;i<g->numVertexes;i++){
if(g->headlist[i].in == ) //把入度为0的,即没有入度的点入栈
stack[++top] = i;
}
while(top){
gettop = stack[top--];
printf("%d ",gettop);
count++;
for(e = g->headlist[gettop].fnode; e ; e=e->next){ //一次遍历链表,减少各个子节点的入度
k = e->data;
if(!(--g->headlist[k].in))
stack[++top] = k;
}
}
if(count < g->numVertexes)
return ERROR;
else
return OK;
}

全部代码:

#include <stdio.h>
#include <stdlib.h>
#define MAX 14
#define ERROR 1
#define OK 0
typedef struct edgeNode{
int data;
struct edgeNode *next;
}EdgeNode;
typedef struct headNode{
int in;
int data;
EdgeNode *fnode;
}HeadNode,HeadList[MAX];
typedef struct{
HeadList headlist;
int numEdges,numVertexes;
}Graph,*graph; void initGraph(graph g);
int inputInfo(graph g,int tar,int in,int data,int first);
void printGraph(graph g);
int topGraph(graph g);
int main(){
Graph *g = (Graph *)malloc(sizeof(Graph));
initGraph(g);
printGraph(g); if(topGraph(g) == ERROR)
printf("有环路!\n");
else
printf("没有环路!\n"); free(g);
getchar();
return ;
}
int topGraph(graph g){
EdgeNode *e;
int i,k,gettop;
int top = ;
int count = ;
int *stack;
stack = (int *)malloc(g->numVertexes * sizeof(int));
for(i=;i<g->numVertexes;i++){
if(g->headlist[i].in == ) //把入度为0的,即没有入度的点入栈
stack[++top] = i;
}
while(top){
gettop = stack[top--];
printf("%d ",gettop);
count++;
for(e = g->headlist[gettop].fnode; e ; e=e->next){ //一次遍历链表,减少各个子节点的入度
k = e->data;
if(!(--g->headlist[k].in))
stack[++top] = k;
}
}
if(count < g->numVertexes)
return ERROR;
else
return OK;
}
void printGraph(graph g){
int i;
printf("vertex:%d,edges:%d\n",g->numVertexes,g->numEdges);
EdgeNode *e = (EdgeNode *)malloc(sizeof(EdgeNode));
for(i=;i<MAX;i++){
printf("[in:%d]%d",g->headlist[i].in,g->headlist[i].data);
e = g->headlist[i].fnode;
while(e != NULL){
printf("->%d",e->data);
e = e->next;
}
printf("\n");
}
free(e);
}
void initGraph(graph g){
g->numVertexes = MAX;
g->numEdges = ;
int i;
for(i=;i<MAX;i++){
g->headlist[i].fnode = NULL;
}
inputInfo(g,,,,);
inputInfo(g,,,,);
inputInfo(g,,,,); inputInfo(g,,,,);
inputInfo(g,,,,);
inputInfo(g,,,,); inputInfo(g,,,,);
inputInfo(g,,,,);
inputInfo(g,,,,); inputInfo(g,,,,);
inputInfo(g,,,,); inputInfo(g,,,,); inputInfo(g,,,,);
inputInfo(g,,,,); inputInfo(g,,,,); inputInfo(g,,,,-); inputInfo(g,,,,); inputInfo(g,,,,);
inputInfo(g,,,,); inputInfo(g,,,,); inputInfo(g,,,,-); inputInfo(g,,,,); inputInfo(g,,,,-);
}
int inputInfo(graph g,int tar,int in,int data,int first){
g->numEdges++; if(first == -){ //没有后继的边节点
g->headlist[tar].in = in;
g->headlist[tar].data = data;
return ;
} if(!g->headlist[tar].fnode){ //观察是否已经初始化
g->headlist[tar].in = in;
g->headlist[tar].data = data;
}
EdgeNode *e = (EdgeNode *)malloc(sizeof(EdgeNode));
e->data = first;
e->next = g->headlist[tar].fnode;
g->headlist[tar].fnode = e;
return ;
}

执行示例:

AOV网络拓扑排序

上一篇:iOS开发 XML解析和下拉刷新,上拉加载更多


下一篇:iOS平台XML解析类库对比和安装说明