518. 零钱兑换 II

题目描述

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。
示例 1:
输入: amount = 5, coins = [1, 2, 5]
输出: 4
解释: 有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
示例 2:
输入: amount = 3, coins = [2]
输出: 0
解释: 只用面额2的硬币不能凑成总金额3。
示例 3:
输入: amount = 10, coins = [10]
输出: 1
注意:
你可以假设:
0 <= amount (总金额) <= 5000
1 <= coin (硬币面额) <= 5000
硬币种类不超过 500 种
结果符合 32 位符号整数

思路

动态规划,思考做出第一步的操作(枚举conins[i]的几种可能性)后,剩余的是什么子问题

对于任意dp[i][j],我们依次从上到下,从左到右计算,dp[i][j]的值是下面的方法数的和:

0,完全不用arr[i]货币(即用0张arr[i]货币),只使用arr[0..i-1]货币去凑剩下的钱j时,方法数为dp[i-1][j]
1,用1张arr[i]货币,用arr[0..i-1]货币去凑剩下的钱j-arr[i]时,方法数为dp[i-1][j-arr[i]]
2,用2张arr[i]货币,用arr[0..i-1]货币去凑剩下的钱j-2*arr[i]时,方法数为dp[i-1][j-2*arr[i]]
3,用3张arr[i]货币,用arr[0..i-1]货币去凑剩下的钱j-3*arr[i]时,方法数为dp[i-1][j-3*arr[i]]
…
k,用k张arr[i]货币,用arr[0..i-1]货币去凑剩下的钱j-k*arr[i]时,方法数为dp[i-1][j-k*arr[i]]

针对上面的情况,我们可以将从1到k的情况进行进一步的优化,
其实从1种情况到第k种情况方法的计数和就是dp[i][j-arr[i]]的定义中各种情况的计数之和:
0,完全不用arr[i]货币(即用0张arr[i]货币),只使用arr[0..i-1]货币去凑剩下的钱j-arr[i]时,方法数为dp[i-1][j-arr[i]]
1,用1张arr[i]货币,用arr[0..i-1]货币去凑剩下的钱j-arr[i]-arr[i]时,方法数为dp[i-1][j-arr[i]-arr[i]]=dp[i-1][j-2*arr[i]]
2,用2张arr[i]货币,用arr[0..i-1]货币去凑剩下的钱j-arr[i]-2*arr[i]时,方法数为dp[i-1][j-arr[i]-2*arr[i]] = 
dp[i-1][j-3*arr[i]]
…
k-1,用k张arr[i]货币,用arr[0..i-1]货币去凑剩下的钱j-arr[i]-(k-1)*arr[i]时,方法数为dp[i-1][j-arr[i]-(k-1)*arr[i]] = 
dp[i-1][j-k*arr[i]]


dp[i][j-arr[i]]定义: 
= 
dp[i-1][j-arr[i]] + dp[i-1][j-arr[i]-arr[i]] + dp[i-1][j-arr[i]-2*arr[i]] + ... + dp[i-1][j-arr[i]-(k-1)*arr[i]]
=
dp[i-1][j-arr[i]] + dp[i-1][j-2*arr[i]] + dp[i-1][j-3*arr[i]] + dp[i-1][j-k*arr[i]]

代码实现1

class Solution {
public:
    int change(int amount, vector<int>& coins) {

		if(amount == 0)
			return 1;//说明不用任何零钱就可以凑成amount,方法组合数为1,一种方法
		int n = coins.size();
		if(n == 0)
			return 0;//如果没有硬币,那么我们凑成amount的方法数为0,没有任何方法能够凑成

    	vector<vector<int>> dp(n,vector<int>(amount+1,0));
        for(int i=0;i<=amount;i++)//动态规划,初始化第一行
        {
            if(i%coins[0] == 0)
            	dp[0][i]=1;
        }        
        for(int i = 1; i < n; i++)//一行一行的求递推公式
        {
            //根据递推公式我们也应该初始化成这个值
            dp[i][0] = 1;
            for(int j = 1; j <= amount; j++)
            {
            	dp[i][j]= dp[i-1][j];//凑数方案中第i种硬币出现0次
            	//为了求总组合数,做到不重不漏,枚举划分方案中第i种硬币可以出现的次数
                for(int cnt = 1;cnt*coins[i] <= j;cnt++)
                    dp[i][j] += dp[i-1][j-cnt*coins[i]];
                                                     
            }
        }
        return dp[n-1][amount];        
    }
};

代码实现2

class Solution {
public:
    int change(int amount, vector<int>& coins) {

        if(amount == 0)
            return 1;//说明不用任何零钱就可以凑成amount,方法组合数为1,一种方法
        int n = coins.size();
        if(n == 0)
            return 0;//如果没有硬币,那么我们凑成amount的方法数为0,没有任何方法能够凑成

        vector<vector<int>> dp(n,vector<int>(amount+1,0));
        for(int i=0;i<=amount;i++)//动态规划,初始化第一行
        {
            if(i%coins[0] == 0)
                dp[0][i]=1;
        }        
        for(int i = 1; i < n; i++)
        {
            //根据递推公式我们也应该初始化成这个值
            dp[i][0] = 1;
            for(int j = 1; j <= amount; j++)
            {
                dp[i][j]= dp[i-1][j];//凑数方案中第i种硬币出现0次
                //为了做到不重不漏,枚举划分方案中第i种硬币可以出现的次数
                // for(int cnt = 1;cnt*coins[i] <= j;cnt++)
                //     dp[i][j] += dp[i-1][j-cnt*coins[i]];
                //对上面的枚举方案进行进一步的优化,
                if(j-coins[i]>=0)
                    dp[i][j] += dp[i][j-coins[i]];                                       
            }
        }
        return dp[n-1][amount];        
    }
};

进一步的思考

根据上面的二维动态规划的递推公式:
dp[i][j] 
= 
dp[i-1][j] if j-coins[i] < 0
dp[i-1][j]+ dp[i][j-coins[i]] if j-coins[i]>=0

我们可以可以只用一维数组保存中间的信息
dp[j]
=
dp[j] if j-coins[i] < 0
dp[j]+ dp[j-coins[i]] if j-coins[i]>=0

518. 零钱兑换 II

上一篇:noip模拟测试21


下一篇:Discourse 的标签(Tag)只能是小写的原因