You have a list of points in the plane. Return the area of the largest triangle that can be formed by any 3 of the points.
Example: Input: points = [[0,0],[0,1],[1,0],[0,2],[2,0]] Output: 2 Explanation: The five points are show in the figure below. The red triangle is the largest.
Notes:
-
3 <= points.length <= 50
. - No points will be duplicated.
-
-50 <= points[i][j] <= 50
. - Answers within
10^-6
of the true value will be accepted as correct.
Code:
利用itertools.combinations
同时利用
使OC为横轴, OB为纵轴, OBC成为直角三角形
S abc = S aob + S boc + S coa
= 0. 5* OB * 高 + 0.5 * OB * OC + 0.5 * OC * 高
= 0.5 * (yc - yb) * (xb - xa) + 0.5 * (yc - yb) * (xc - xb) + 0.5 * (xc - xb) * (ya - yc)
= 0.5 * (yc - yb) * (xb - xa) + 0.5 * (xc - xb) * (yc - yb + ya - yc)
= 0.5 * (yc - yb) * (xb - xa) + 0.5 * (xc - xb) *(ya - yb)
= 0.5 (xa*yb + xb*yc + xc*ya - xa*yc - xc*yb - xb*ya)
规律是三个相加,再三个相减,ab,bc,ca,ac,cb,ba 也是对称的
T: O(n ^3)
def largestTriangleArea(self, p): return max(0.5 * abs(xa*yb + xb*yc + xc*ya - xb*ya - xc*yb - xa*yc) for (xa, ya), (xb, yb), (xc, yc) in itertools.combinations(p, 3))