BZOJ 3809: Gty的二逼妹子序列

 

3809: Gty的二逼妹子序列

Time Limit: 80 Sec  Memory Limit: 28 MB
Submit: 1387  Solved: 400
[Submit][Status][Discuss]

Description

Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题。
 
对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数。
 
为了方便,我们规定妹子们的美丽度全都在[1,n]中。
 
给定一个长度为n(1<=n<=100000)的正整数序列s(1<=si<=n),对于m(1<=m<=1000000)次询问“l,r,a,b”,每次输出sl...sr中,权值∈[a,b]的权值的种类数。

Input

第一行包括两个整数n,m(1<=n<=100000,1<=m<=1000000),表示数列s中的元素数和询问数。
 
第二行包括n个整数s1...sn(1<=si<=n)。
 
接下来m行,每行包括4个整数l,r,a,b(1<=l<=r<=n,1<=a<=b<=n),意义见题目描述。
 
保证涉及的所有数在C++的int内。
 
保证输入合法。

Output

对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。

Sample Input

10 10
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4

Sample Output

2
0
0
2
1
1
1
0
1
2

HINT

样例的部分解释:
 
5 9 1 2
子序列为4 1 5 1 2
在[1,2]里的权值有1,1,2,有2种,因此答案为2。
 
3 4 7 9
子序列为5 1
在[7,9]里的权值有5,有1种,因此答案为1。
 
4 4 2 5
子序列为1
没有权值在[2,5]中的,因此答案为0。
 
2 3 4 7
子序列为4 5
权值在[4,7]中的有4,5,因此答案为2。
 
建议使用输入/输出优化。

Source

 

[Submit][Status][Discuss]

初识莫队算法,大体记录一下。

莫队算法可以用来解决一类区间询问问题,例如一道经典的例题

给出一个序列,还有若干次询问,每次询问在区间[l,r]中有多少个数字出现了3次及3次以上。

先考虑暴力算法,不难想到对于每个询问,扫描一遍区间,用数组记录下每个数字出现的次数并及时统计出现3次及以上的数字个数,时间复杂度O(询问数*区间大小)。

再考虑高级算法,就是维护一段区间内的数字出现次数以及3次及三次以上的数字个数,区间每次可以O(1)的向某个方向(左或右)扩展一个元素,或弹出一个元素,只需要修改该数字的出现次数,并检查是否发生了从3到2或从2到3的“质变”即可。这个算法相较于上一个暴力算法并没与在复杂度上体现出什么优势,但这是莫队算法的基础。

最后看莫队算法,采用类似于分块的sqrt(n)划分方式,先将所有询问离线,按照询问的区间左端点排序,每sqrt(n)个单位长度划分为一组,注意是按照长度。然后对于每一组询问,在组内对询问按照区间右端点排序,使其单调,然后暴力处理一个组内的所有询问即可。由于左端点相距至多sqrt(n)个长度,所有每次维护的区间的左端点最多进行sqrt(n)次改变(加入元素或删除元素),而区间的右端点由于单调性质至多移动n个单位长度,全局复杂度O(n*sqrt(n)),优秀之极。

对于这道题,一开始的想法是莫队算法+树状数组(或线段树)什么的,时间复杂度O(N*sqrt(N)*log(N)),然而亲身实践之后并没有卡过去,看来出题人没有那么友好。

考虑把树状数组的O(logN)加入和O(logN)查询做一些调整,用分块的O(1)插入和O(sqrt(N))查询替代,全局复杂度降至O(NsqrtN)。

 #include <bits/stdc++.h>

 template <class T>
inline void read(T &num) {
register int neg = false;
register int bit = getchar(); while (bit <= '') {
if (bit == '-')
neg ^= neg;
bit = getchar();
} num = ; while (bit >= '') {
num = num*
+ bit - '';
bit = getchar();
} if (neg)num = -num;
} const int N = 1e5 + ;
const int M = 1e6 + ; int n, m, s, num[N], cnt[N], sgl[N], sum[N]; /*<--- QRY --->*/ struct query {
int l, r, a, b, id, ans;
}qry[M]; inline bool cmp_lr(const query &A, const query &B) {
if (A.l / s != B.l / s)
return A.l < B.l;
else
return A.r < B.r;
} inline bool cmp_id(const query &A, const query &B) {
return A.id < B.id;
} /*<--- MO --->*/ inline int ask(int a, int b) {
if (a / s == b / s) {
int ret = ;
for (int i = a; i <= b; ++i)ret += sgl[i];
return ret;
}
else {
int ret = , lt = a / s + , rt = b / s - ;
for (int i = lt; i <= rt; ++i)ret += sum[i];
for (int i = a; i / s < lt; ++i)ret += sgl[i];
for (int i = b; i / s > rt; --i)ret += sgl[i];
return ret;
}
} inline void add(int k, int v) {
sgl[k] += v, sum[k/s] += v;
} inline void insert(int k) {
if (++cnt[k] == )add(k, );
} inline void remove(int k) {
if (--cnt[k] == )add(k, -);
} /*<--- MAIN --->*/ signed main(void) {
read(n);
read(m); s = sqrt(n); for (int i = ; i <= n; ++i)
read(num[i]); for (int i = ; i <= m; ++i) {
qry[i].id = i;
read(qry[i].l);
read(qry[i].r);
read(qry[i].a);
read(qry[i].b);
} memset(cnt, , sizeof(cnt));
memset(sum, , sizeof(sum));
memset(sgl, , sizeof(sgl)); std::sort(qry + , qry + + m, cmp_lr); for (int i = , x = , y = ; i <= m; ++i) {
while (x < qry[i].l)remove(num[x]), ++x;
while (y > qry[i].r)remove(num[y]), --y;
while (x > qry[i].l)--x, insert(num[x]);
while (y < qry[i].r)++y, insert(num[y]);
qry[i].ans = ask(qry[i].a, qry[i].b);
} std::sort(qry + , qry + + m, cmp_id); for (int i = ; i <= m; ++i)
printf("%d\n", qry[i].ans);
}

@Author: YouSiki

上一篇:SVN用法(merge,branch,switch)


下一篇:Android 获取地理位置信息 封装好了 直接用