题目描述
LYK在玩猜数字游戏。
总共有n个互不相同的正整数,LYK每次猜一段区间的最小值。形如[li,ri]这段区间的数字的最小值一定等于xi。
我们总能构造出一种方案使得LYK满意。直到…… LYK自己猜的就是矛盾的!
例如LYK猜[1,3]的最小值是2,[1,4]的最小值是3,这显然就是矛盾的。
你需要告诉LYK,它第几次猜数字开始就已经矛盾了。
输入
第一行两个数n和T,表示有n个数字,LYK猜了T次。
接下来T行,每行三个数分别表示li,ri和xi。
接下来T行,每行三个数分别表示li,ri和xi。
输出
输出一个数表示第几次开始出现矛盾,如果一直没出现矛盾输出T+1。
样例输入
20 4
1 10 7
5 19 7
3 12 8
1 20 1
1 10 7
5 19 7
3 12 8
1 20 1
样例输出
3
提示
数据范围
对于50%的数据n<=8,T<=10。
对于80%的数据n<=1000,T<=1000。
对于100%的数据1<=n,T<=1000000,1<=li<=ri<=n,1<=xi<=n(但并不保证一开始的所有数都是1~n的)
Hint
建议使用读入优化
inline int read()
{
int x = 0, f = 1;
char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = -1;
for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - '0';
return x * f;
}
题解
这道题我们先考虑矛盾的情况
我们不难发现有以下两种情况是矛盾的
1.当一个区间覆盖了另一个区间且大的区间的x值比另一个区间的x值小的时候是矛盾的
2.当两个区间的x值相同时,如果这两个区间没有交集,这也是矛盾的
知道了矛盾的情况后
我们可以二分矛盾的句子的位置
将前k个句子按x值从大到小排个序,然后我们枚举,判断当前区间的x值和前一个区间的x值是否相同
如果相同,就判断一下有没有交集
如果不相同,我们可以维护一个线段树,将交集的区间覆盖为1,查询并集的区间是否被覆盖为1,当然我们也可以用并查集来维护,我是用并查集来做的,但还是感觉线段树应该好懂一些(虽然代码长了些)
#include<bits/stdc++.h>
#define N 1000005
using namespace std;
int n,T,cnt;
int fa[N];
struct node{
int l,r,x;
}a[N],b[N];
bool cmp(node x,node y){ return x.x>y.x; }
int find(int x){ if (x!=fa[x]) fa[x]=find(fa[x]); return fa[x]; }
bool check(int x){
int f1,f2;
for (int i=;i<=n+;i++) fa[i]=i;
for (int i=;i<=x;i++) b[i]=a[i];
sort(b+,b++x,cmp);
int lmin=b[].l,lmax=b[].l,rmin=b[].r,rmax=b[].r;
for (int i=;i<=x;i++){
if (b[i].x<b[i-].x){
f1=find(lmax);
if (f1>rmin) return true;//判断是否有大于b[i].x的区间覆盖了
f2=find(rmax+);
for (int j=find(lmin);j<=rmax;j++){
f1=find(j);
fa[f1]=f2;
}
lmin=lmax=b[i].l;
rmin=rmax=b[i].r;
} else{
lmin=min(lmin,b[i].l);
lmax=max(lmax,b[i].l);
rmin=min(rmin,b[i].r);
rmax=max(rmax,b[i].r);
if (lmax>rmin) return true;//判断是否有交集
}
}
f1=find(lmax);
if (f1>rmin) return true;
return false;
}
int main(){
scanf("%d%d",&n,&T);
for (int i=;i<=T;i++)
scanf("%d%d%d",&a[i].l,&a[i].r,&a[i].x);
int l=,r=T;
int ans=T+;
while (l<=r){
int mid=(l+r)>>;
if (check(mid)){
ans=mid;
r=mid-;
} else l=mid+;
}
printf("%d\n",ans);
return ;
}