A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
设mxn的表格,前面增加一列为mX(n+1), 注意对于
第i行第j列的元素path[i][j],其路径前一个点只有path[i-1][j]和path[i][j-1]两种可能
即path[i][j] =path[i-1][j] + path[i][j-1],而path[i-1][j]为上面一行的元素,而path[i][j-1]为其左边的元素
当更新path[i][j]时,此时左边元素已经更新,只需要用滚动数组实现即可
path[0] | path[1] | path[2] | path[3] | path[4] | path[5] | path[6] | path[7] |
path[0] | path[1] | path[2]=path[1]+path[2] | |||||
path[0] |
int unique(int m, int n){
vector<int> path(n+,);
path[] = ;
for(int i = ; i < m; ++ i){
for(int j = ; j<= n ; ++ j){
path[j]+=path[j-];
}
}
return path[n];
}