4059: [Cerc2012]Non-boring sequences
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 632 Solved: 227Description
我们害怕把这道题题面搞得太无聊了,所以我们决定让这题超短。一个序列被称为是不无聊的,仅当它的每个连续子序列存在一个独一无二的数字,即每个子序列里至少存在一个数字只出现一次。给定一个整数序列,请你判断它是不是不无聊的。
Input
第一行一个正整数T,表示有T组数据。每组数据第一行一个正整数n,表示序列的长度,1 <= n <= 200000。接下来一行n个不超过10^9的非负整数,表示这个序列。
Output
对于每组数据输出一行,输出"non-boring"表示这个序列不无聊,输出"boring"表示这个序列无聊。
Sample Input
4
5
1 2 3 4 5
5
1 1 1 1 1
5
1 2 3 2 1
5
1 1 2 1 1Sample Output
non-boring
boring
non-boring
boringHINT
Source
【分析】
这题我是不会往扫描线方向想的。感觉很神奇。
首先对于每个a[i]求前一个同色的位置$last$和后一个的位置$next$,显然左端点在[last+1,i]右端点在[i,next-1]的都是可以的。
那么把左端点当成x,右端点当成y,区间就表示成了平面上的一个点,可行区间集就是一个矩形,最后看看n个矩形是否把上三角覆盖。
【这个把这题复杂化了,其实有更简单的方法所以我没打这个哦
很容易想到暴力。
如果序列non-boring,必定有一个数值只出现了一次,找到他的位置i【可能有多个,先随便找一个】,
那么区间跨越i的都可以的嘛,所以只需判断[l,i-1]和[i+1,r]即可。
就把区间分治了。
但是时间复杂度???
网上的神犇们说,从左右两端向中间暴力枚举,用$next$和$last$$O(1)$判断即可。
是nlogn的。
因为:$T(n)=max{T(k)+T(n-k)+min(n,n-k)}=O(nlogn)$
直观证明:
我们考虑每个对时间复杂度有贡献的下标,它一定属于两段中比较小的那一段,于是。。
每次每个下标被算一次,它的所在块就会缩小一倍,那么显然每个下标的贡献就是O(logn),它的总时间复杂度就是O(nlogn)。
ORZORZ。。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 200010 struct node{int x,id;}t[Maxn];
bool cmp(node x,node y) {return x.x<y.x;}
int a[Maxn],nt[Maxn],lt[Maxn],ft[Maxn]; bool ffind(int l,int r)
{
if(l>=r) return ;
int t=-;
for(int i=;i<=r-l+;i++)
{
if(l+i>r-i) break;
if(nt[l+i]>r&<[l+i]<l) {t=l+i;break;}
if(nt[r-i]>r&<[r-i]<l) {t=r-i;break;}
}
if(t==-) return ;
return ffind(l,t-)&&ffind(t+,r);
} int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&t[i].x);t[i].id=i;
}
sort(t+,t++n,cmp);
a[t[].id]=;int p=;
for(int i=;i<=n;i++)
{
if(t[i].x!=t[i-].x) p++;
a[t[i].id]=p;
}
for(int i=;i<=p;i++) ft[i]=n+;
for(int i=n;i>=;i--) nt[i]=ft[a[i]],ft[a[i]]=i;
for(int i=;i<=p;i++) ft[i]=;
for(int i=;i<=n;i++) lt[i]=ft[a[i]],ft[a[i]]=i;
if(ffind(,n)) printf("non-boring\n");
else printf("boring\n");
}
return ;
}
2017-04-25 08:38:03