1、题目大意:给你一个序列,有5种操作,都有什么呢。。。
1> 区间第k小 这个直接用二分+树套树做
2> 区间小于k的有多少 这个直接用树套树做
3> 单点修改 这个直接用树套树做
4> 区间内k的前驱 这个就是1和2操作的合并,就是查询k的排名,然后就是知道他的前驱的排名,然后第k小
5> 区间内k的后继 这个和4同理
#include <cstdio> #include <cstdlib> #include <cstring> #include <algorithm> using namespace std; struct Node{ Node *ch[2]; int num, cnt, v, r; bool operator < (const Node& rhs) const{ return r < rhs.r; } inline int cmp(int x){ if(x == v) return -1; if(x < v) return 0; return 1; } inline void maintain(){ cnt = num; if(ch[0]) cnt += ch[0] -> cnt; if(ch[1]) cnt += ch[1] -> cnt; return; } } ft[5000000], *root[400000]; int tot; int a[100000]; inline void treap_rotate(Node* &o, int d){ Node *k = o -> ch[d ^ 1]; o -> ch[d ^ 1] = k -> ch[d]; k -> ch[d] = o; o -> maintain(); k -> maintain(); o = k; return; } inline void treap_insert(Node* &o, int value){ if(!o){ o = &ft[tot ++]; o -> ch[0] = o -> ch[1] = NULL; o -> num = 1; o -> v = value; o -> r = rand(); } else{ int d = o -> cmp(value); if(d == -1){ o -> num ++; } else{ treap_insert(o -> ch[d], value); if(o -> ch[d] > o) treap_rotate(o, d ^ 1); } } o -> maintain(); } inline void treap_remove(Node* &o, int value){ if(!o) return; int d = o -> cmp(value); if(d == -1){ if(o -> num > 1) o -> num --; else if(!o -> ch[0]) o = o -> ch[1]; else if(!o -> ch[1]) o = o -> ch[0]; else{ int d2; if(o -> ch[0] > o -> ch[1]) d2 = 1; else d2 = 0; treap_rotate(o, d2); treap_remove(o -> ch[d2], value); } } else{ treap_remove(o -> ch[d], value); } if(o) o -> maintain(); } inline int treap_lessk(Node* &o, int k){ if(!o) return 0; int d = o -> cmp(k); if(d == -1){ int ret = o -> num; if(o -> ch[0]) ret += o -> ch[0] -> cnt; return ret; } else if(d == 0){ return treap_lessk(o -> ch[d], k); } else{ int ss = o -> num; if(o -> ch[0]) ss += o -> ch[0] -> cnt; return treap_lessk(o -> ch[d], k) + ss; } } inline int treap_find(Node* &o, int k){ if(!o) return 0; int d = o -> cmp(k); if(d == -1) return o -> num; else return treap_find(o -> ch[d], k); } inline int segment_tree_find(int l, int r, int o, int x, int y, int k){ if(x <= l && r <= y){ return treap_find(root[o], k); } int mid = (l + r) / 2; int ret = 0; if(x <= mid) ret += segment_tree_find(l, mid, 2 * o, x, y, k); if(y > mid) ret += segment_tree_find(mid + 1, r, 2 * o + 1, x, y, k); return ret; } inline void segment_tree_add(int l, int r, int o, int x, int value){ treap_remove(root[o], a[x]); treap_insert(root[o], value); if(l == r){ a[x] = value; return; } int mid = (l + r) / 2; if(x <= mid) segment_tree_add(l, mid, 2 * o, x, value); else segment_tree_add(mid + 1, r, 2 * o + 1, x, value); } inline int segment_tree_query_lessk(int l, int r, int o, int x, int y, int k){ if(x <= l && r <= y){ return treap_lessk(root[o], k); } int mid = (l + r) / 2; int ret = 0; if(x <= mid) ret += segment_tree_query_lessk(l, mid, 2 * o, x, y, k); if(y > mid) ret += segment_tree_query_lessk(mid + 1, r, 2 * o + 1, x, y, k); return ret; } inline int segment_tree_query_NO_k(int l, int r, int o, int x, int y, int k, int n){ int L = 0, R = 100000000; while(L < R){ int mid = (L + R) / 2; if(segment_tree_query_lessk(1, n, 1, x, y, mid) < k) L = mid + 1; else R = mid; } return L; } int main(){ int n, m; scanf("%d%d", &n, &m); for(int i = 1; i <= n; i ++){ int x; scanf("%d", &x); segment_tree_add(1, n, 1, i, x); } for(int i = 1; i <= m; i ++){ int op, x, y, z; scanf("%d", &op); if(op == 1){ scanf("%d%d%d", &x, &y, &z); int ans = segment_tree_query_lessk(1, n, 1, x, y, z); ans -= segment_tree_find(1, n, 1, x, y, z); ans ++; printf("%d\n", ans); } else if(op == 2){ scanf("%d%d%d", &x, &y, &z); int ans = segment_tree_query_NO_k(1, n, 1, x, y, z, n); printf("%d\n", ans); } else if(op == 3){ scanf("%d%d", &x, &y); segment_tree_add(1, n, 1, x, y); } else if(op == 4){ scanf("%d%d%d", &x, &y, &z); int k = segment_tree_query_lessk(1, n, 1, x, y, z); k -= segment_tree_find(1, n, 1, x, y, z); int ans = segment_tree_query_NO_k(1, n, 1, x, y, k, n); printf("%d\n", ans); } else{ scanf("%d%d%d", &x, &y, &z); int k = segment_tree_query_lessk(1, n, 1, x, y, z); k ++; int ans = segment_tree_query_NO_k(1, n, 1, x, y, k, n); printf("%d\n", ans); } } return 0; }