B
Description
给出\(n(\leq5\times10^4),L(\leq15)\),构造\(3n\)个不同\(L\)位的三进制数,使得在这\(3n\)个数的每一位上,0/1/2各出现\(n\)次。在这样的前提下,使得其中的最大数尽可能小。
Solution
易知最大的\(n\)个数一定是2开头的,那么就令这\(n\)个数为\(200..0_{(3)},200..0_{(3)}+1,...,200..0_{(3)}+n-1\)。
将这些数中的0换成1,1换成2,2换成0,作为最小的\(n\)个数;将这些数中的0换成2,1换成0,2换成1,作为中间的\(n\)个数。
C
Description
对于无前缀零的\(1..2^n(n\leq10^6)\)这些二进制数,将其作为字符串按字典序排列,求第\(x(\leq2^n-1)\)个(\(x\)以二进制给出)。
Solution
考虑这个排列是怎么生成的。按位数将二进制数加入到排列中(新加入的用[]标注):
- 1位:[1]
- 2位:1 [10 11]
- 3位:1 10 [100 101] 11 [110 111]
- 4位:1 10 100 [1000 1001] 101 [1010 1011] 11 110 [1100 1101] 111 [1110 1111]
发现\(i\)位数都是在\(i-1\)位数后插入两个,那么除第一位为1外,一个序列可以分成:一个空串 + \(2^k-1\)个0首串 + \(2^k-1\)个1首串。于是可以递归求解。第\(x\)个串(从0开始)是:
- 空串,当\(x=0\)。
- 0首串中的第\(x-1\)个,当\(x<2^k\)。
- 1首串中的第\(x-2^k\)个,当\(2^k \leq x\)。
递归至多\(n\)次,便可确定每一位的取值。你或许会担心对大数\(x\)进行运算会让复杂度退化到\(O(n^2)\),不过其实是不会的。
判断\(x\)与\(2^k\)的大小只要观察\(x\)的首位;\(x-2^k\)只需移除首位上的1。对于判0操作,可以维护\(x\)中1的数目,若\(x\)中没有1说明\(x=0\)。对于\(x-1\)操作,寻找到最后的1位,将其置0并将后面所有位置1,这一过程中可以维护\(x\)中1的数目。由于\(x-1\)操作最多执行\(n\)次,而第\(k\)位每\(2^k\)次操作中才会被借位一次,且一经借位后方都被置1,使得借位的复杂度大大降低。
Code
//Binary Strings
#include <cstdio>
#include <cstring>
const int N=1e6+10;
int n; char x[N],y[N];
bool equal0()
{
for(int i=n;i>=1;i--) if(x[i]=='1') return false;
return true;
}
void minus1()
{
int k=n;
while(x[k]=='0') k--;
x[k]='0';
for(int i=k+1;i<=n;i++) x[i]='1';
}
int main()
{
scanf("%d",&n);
scanf("%s",x+1);
int m=strlen(x+1);
for(int i=n;i>=1;i--) x[i]=(i-n+m>0)?x[i-n+m]:'0';
for(int i=1;i<=n;i++) y[i]=0;
minus1();
y[1]='1';
for(int k=1;k<=n;k++)
{
if(equal0()) break;
if(x[k]=='0') y[k+1]='0',minus1();
else y[k+1]='1',x[k]='0';
}
puts(y+1);
return 0;
}