HDU 1003 Max Sum --- 经典DP

  HDU 1003     相关链接   HDU 1231题解

  题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置

  解题思路:经典DP,可以定义dp[i]表示以a[i]为结尾的子序列的和的最大值,因而最大连续子序列及为dp数组中的最大值。

         状态转移方程:dp[1] = a[1]; //以a[1]为结尾的子序列只有a[1];

               i >= 2时, dp[i] = max( dp[i-1]+a[i],  a[i] );

        dp[i-1]+a[i] > a[i]时,即dp[i-1](以a[i-1]为结尾的子序列的和的最大值)的值为正,那么dp[i-1]则对dp[i]有贡献,

        dp[i-1]+a[i] < a[i]时,即dp[i-1] < 0,那么抛弃它,dp[i] = a[i]

      例子:序列 6 -7 5 2 -3, 则dp[i]分别为 6 -1 5 7 4,注意dp[2]直接用a[2]表示,因为dp[1] = -1 < 0; 最后最大子序列和即为dp数组中的最大值 5;

      至于位置的记录,则再每次获取到最大值时更新即可。另外此题是从前往后更新,可直接使用a[i]数组而省下一个dp数组。

/* HDU 1003 Max Sum --- 经典DP */
#include <cstdio>
#include <cstring> int dp[]; int main()
{
#ifdef _LOCAL
freopen("D:\\input.txt", "r", stdin);
#endif
int t, n;
int kase = ;
int fst, lst, maxSum; //记录首位位置以及最大和
int start; //start是用于记录中间变化的起点的
scanf("%d", &t);
while (t--){
scanf("%d", &n);
for (int i = ; i < n; ++i){
scanf("%d", dp + i);
}//for(i) start = fst = lst = ;
maxSum = dp[];
for (int i = ; i < n; ++i){
//dp[i] = MAX(dp[i - 1] + dp[i], dp[i]);
//由于是从前往后更新的,可以省下一个dp数组
if (dp[i-] >= ){
dp[i] = dp[i - ] + dp[i];
}
else{
start = i; //抛弃dp[i-1],则起点发生变化
} if (dp[i] > maxSum){
//若当前求得的子序列和最大,进行更新
maxSum = dp[i];
fst = start;
lst = i;
}
}
if (kase){
printf("\n");
}
printf("Case %d:\n", ++kase);
printf("%d %d %d\n", maxSum, fst+, lst+);
} return ;
}
上一篇:css3转换、动画、布局


下一篇:CSS3动画 animation (简单小时钟)