C# 方法

方法又称成员函数(Member Function),集中体现了类或对象的行为。方法同样分为静态方法和实例方法。静态方法只可以操作静态域,而实例方法既可以操作实例域,也可以操作静态域--虽然这不被推荐,但在某些特殊的情况下会显得很有用。方法也有如域一样的5种存取修饰符--public,protected,internal,protected internal,private,它们的意义如前所述。

方法参数

方法的参数是个值得特别注意的地方。方法的参数传递有四种类型:传值(by value),传址(by reference),输出参数(by output),数组参数(by array)。传值参数无需额外的修饰符,传址参数需要修饰符ref,输出参数需要修饰符out,数组参数需要修饰符params。传值参数在方法调用过程中如果改变了参数的值,那么传入方法的参数在方法调用完成以后并不因此而改变,而是保留原来传入时的值。传址参数恰恰相反,如果方法调用过程改变了参数的值,那么传入方法的参数在调用完成以后也随之改变。实际上从名称上我们可以清楚地看出两者的含义--传值参数传递的是调用参数的一份拷贝,而传址参数传递的是调用参数的内存地址,该参数在方法内外指向的是同一个存储位置。看下面的例子及其输出:

using System;
class Test
{
    static void Swap(ref int x, ref int y) 
    {
        int temp = x;
        x = y;
        y = temp;
    }
    static void Swap(int x,int y) 
    {
        int temp = x;
        x = y;
        y = temp;
    }
    static void Main() 
    {
        int i = 1, j = 2;
        Swap(ref i, ref j);
        Console.WriteLine("i = {0}, j = {1}", i, j);
        Swap(i,j);
        Console.WriteLine("i = {0}, j = {1}", i, j);
    }
}

程序经编译后执行输出: 
  
i = 2, j = 1 
i = 2, j = 1 

我们可以清楚地看到两个交换函数Swap()由于参数的差别--传值与传址,而得到不同的调用结果。注意传址参数的方法调用无论在声明时还是调用时都要加上ref修饰符。

笼统地说传值不会改变参数的值在有些情况下是错误的,我们看下面一个例子:

using System;
class Element
{
    public int Number=10;
}

class Test
{
    static void Change(Element s)
    {
        s.Number=100;
    }
    static void Main() 
    {
        Element e=new Element();
        Console.WriteLine(e.Number);
        Change(e); 
        Console.WriteLine(e.Number);
    }
}
 
程序经编译后执行输出: 
 
10 
100 

我们看到即使传值方式仍然改变了类型为Element类的对象t。但严格意义上讲,我们是改变了对象t的域,而非对象t本身。我们再看下面的例子:

using System;
class Element
{
    public int Number=10;
}

class Test
{
    static void Change(Element s)
    {
        Element r=new Element();
        r.Number=100;
        s=r;
    }
    static void Main() 
    {
        Element e=new Element();

        Console.WriteLine(e.Number);
        Change(e); 
        Console.WriteLine(e.Number);
    }
}

程序经编译后执行输出: 
 
10 
10

传值方式根本没有改变类型为Element类的对象t!实际上,如果我们能够理解类这一C#中的引用类型(reference type)的特性,我们便能看出上面两个例子差别!在传值过程中,引用类型本身不会改变(t不会改变),但引用类型内含的域却会改变(t.Number改变了)!C#语言的引用类型有:object类型(包括系统内建的class类型和用户自建的class类型--继承自object类型),string类型,interface类型,array类型,delegate类型。它们在传值调用中都有上面两个例子展示的特性。

在传值和传址情况下,C#强制要求参数在传入之前由用户明确初始化,否则编译器报错!但我们如果有一个并不依赖于参数初值的函数,我们只是需要函数返回时得到它的值是该怎么办呢?往往在我们的函数返回值不至一个时我们特别需要这种技巧。答案是用out修饰的输出参数。但需要记住输出参数与通常的函数返回值有一定的区别:函数返回值往往存在堆栈里,在返回时弹出;而输出参数需要用户预先制定存储位置,也就是用户需要提前声明变量--当然也可以初始化。看下面的例子: 
 
using System;
class Test
{
    static void ResoluteName(string fullname,out string firstname,out string lastname) 
    {
        string[] strArray=fullname.Split(new char[]{‘ ‘});
        firstname=strArray[0];
        lastname=strArray[1];
    }
    public static void Main() 
    {
        string MyName="Cornfield Lee";
        string MyFirstName,MyLastName;

        ResoluteName(MyName,out MyFirstName,out MyLastName);

        Console.WriteLine("My first name: {0}, My last name: {1}", 
MyFirstName, MyLastName);
    }
}
 
程序经编译后执行输出:

My first name: Cornfield, My last name: Lee 

在函数体内所有输出参数必须被赋值,否则编译器报错!out修饰符同样应该应用在函数声明和调用两个地方,除了充当返回值这一特殊的功能外,out修饰符ref修饰符有很相似的地方:传址。我们可以看出C#完全摈弃了传统C/C++语言赋予程序员莫大的*度,毕竟C#是用来开发高效的下一代网络平台,安全性--包括系统安全(系统结构的设计)和工程安全(避免程序员经常犯的错误)是它设计时的重要考虑,当然我们看到C#并没有因为安全性而丧失多少语言的性能,这正是C#的卓越之处,“Sharp”之处!

数组参数也是我们经常用到的一个地方--传递大量的数组集合参数。我们先看下面的例子:

using System;
class Test
{
    static int Sum(params int[] args)
    {
        int s=0;
        foreach(int n in args)
        {
            s+=n;
        }
        return s;
    }
    static void Main() 
    {
        int[] var=new int[]{1,2,3,4,5};
        Console.WriteLine("The Sum:"+Sum(var));
        Console.WriteLine("The Sum:"+Sum(10,20,30,40,50));
    }
}

程序经编译后执行输出: 
 
The Sum:15 
The Sum:150 

可以看出,数组参数可以是数组如:var,也可以是能够隐式转化为数组的参数如:10,20,30,40,50。这为我们的程序提供了很高的扩展性。

同名方法参数的不同会导致方法出现多态现象,这又叫重载(overloading)方法。需要指出的是编译器是在编译时便绑定了方法和方法调用。只能通过参数的不同来重载方法,其他的不同(如返回值)不能为编译器提供有效的重载信息。

 

方法继承

第一等的面向对象机制为C#的方法引入了virtual,override,sealed,abstract四种修饰符来提供不同的继承需求。类的虚方法是可以在该类的继承自类中改变其实现的方法,当然这种改变仅限于方法体的改变,而非方法头(方法声明)的改变。被子类改变的虚方法必须在方法头加上override来表示。当一个虚方法被调用时,该类的实例--亦即对象的运行时类型(run-time type)来决定哪个方法体被调用。我们看下面的例子: 
 
using System;
class Parent
{
    public void F() { Console.WriteLine("Parent.F"); }
    public virtual void G() { Console.WriteLine("Parent.G"); }
}
class Child: Parent
{
    new public void F() { Console.WriteLine("Child.F"); }
    public override void G() { Console.WriteLine("Child.G"); }
}
class Test
{
    static void Main() 
    {
        Child b = new Child();
        Parent a = b;
        a.F();
        b.F();
        a.G();
        b.G();
    }
}

程序经编译后执行输出: 
 
Parent.F 
Child.F 
Child.G 
Child.G 

我们可以看到class Child中F()方法的声明采取了重写(new)的办法来屏蔽class Parent中的非虚方法F()的声明。而G()方法就采用了覆盖(override)的办法来提供方法的多态机制。需要注意的是重写(new)方法和覆盖(override)方法的不同,从本质上讲重写方法是编译时绑定,而覆盖方法是运行时绑定。值得指出的是虚方法不可以是静态方法--也就是说不可以用static和virtual同时修饰一个方法,这由它的运行时类型辨析机制所决定。override必须和virtual配合使用,当然也不能和static同时使用。

那么我们如果在一个类的继承体系中不想再使一个虚方法被覆盖,我们该怎样做呢?答案是sealed override (密封覆盖),我们将sealed和override同时修饰一个虚方法便可以达到这种目的:sealed override public void F()。注意这里一定是sealed和override同时使用,也一定是密封覆盖一个虚方法,或者一个被覆盖(而不是密封覆盖)了的虚方法。密封一个非虚方法是没有意义的,也是错误的。看下面的例子:

//sealed.cs
// csc /t:library sealed.cs
using System;
class Parent
{
    public virtual void F() 
    {
        Console.WriteLine("Parent.F");
    }
    public virtual void G() 
    {
        Console.WriteLine("Parent.G");
    }
}
class Child: Parent
{
    sealed override public void F() 
    {
        Console.WriteLine("Child.F");
    } 
    override public void G() 
    {
        Console.WriteLine("Child.G");
    } 
}
class Grandson: Child
{
    override public void G() 
    {
        Console.WriteLine("Grandson.G");
    } 
}

抽象(abstract)方法在逻辑上类似于虚方法,只是不能像虚方法那样被调用,而只是一个接口的声明而非实现。抽象方法没有类似于{…}这样的方法实现,也不允许这样做。抽象方法同样不能是静态的。含有抽象方法的类一定是抽象类,也一定要加abstract类修饰符。但抽象类并不一定要含有抽象方法。继承含有抽象方法的抽象类的子类必须覆盖并实现(直接使用override)该方法,或者组合使用abstract override使之继续抽象,或者不提供任何覆盖和实现。后两者的行为是一样的。看下面的例子:

//abstract1.cs
// csc /t:library abstract1.cs
using System;
abstract class Parent
{
    public abstract void F();

    public abstract void G();
}
abstract class Child: Parent
{
    public abstract override void F();
}
abstract class Grandson: Child
{
    public override void F()
    {
        Console.WriteLine("Grandson.F");
    }
    public override void G()
    {
        Console.WriteLine("Grandson.G");
    }
}
 

抽象方法可以抽象一个继承来的虚方法,我们看下面的例子:

//abstract2.cs
// csc /t:library abstract2.cs
using System;
class Parent
{
    public virtual void Method()
    {
        Console.WriteLine("Parent.Method");
    }
}
abstract class Child: Parent
{
    public abstract override void Method();
}
abstract class Grandson: Child
{
    public override void Method()
    {
        Console.WriteLine("Grandson.Method");
    }
}

归根结底,我们抓住了运行时绑定和编译时绑定的基本机理,我们便能看透方法呈现出的种种overload,virtual,override,sealed,abstract等形态,我们才能运用好方法这一利器!

 

外部方法

C#引入了extern修饰符来表示外部方法。外部方法是用C#以外的语言实现的方法如Win32 API函数。如前所是外部方法不能是抽象方法。我们看下面的一个例子: 
 
using System;
using System.Runtime.InteropServices;
class MyClass
{
    [DllImport("user32.dll")]
    static extern int MessageBoxA(int hWnd, string msg,string caption, int type);

public static void Main() 
    {
        MessageBoxA(0, "Hello, World!", "This is called from a C# app!", 0);
    }
}
 

程序经编译后执行输出:

C# 方法

 这里我们调用了Win32 API函数int MessageBoxA(int hWnd, string msg,string caption, int type)。

 

C# 方法

上一篇:C#继承机制 访问与隐藏基类成员


下一篇:PopupWindow弹出后其他地方变暗的效果如何实现