求解最短路径问题

1.问题描述

给定m行n列的网咯,每个格子(i,j)里都一个非负数A[i][j]
求一个从左上角(0,0)到右下角的路径,每一部只能向下或者向右走一步
使得路径上的格子里的数字之和最小
输出最小数字和
例如:
{
{1, 5, 7, 6, 8}
{4, 7, 4, 4, 9}
{10, 3, 2, 3, 2}
}
最小长度22

2.二维数组方法和滚动数组方法

//
// Created by Administrator on 2021/7/25.
//

#ifndef C__TEST01_MINPATHSUM_HPP
#define C__TEST01_MINPATHSUM_HPP

#include <vector>
class MinPathSum {
/*
 * 给定m行n列的网咯,每个格子(i,j)里都一个非负数A[i][j]
 * 求一个从左上角(0,0)到右下角的路径,每一部只能向下或者向右走一步
 * 使得路径上的格子里的数字之和最小
 * 输出最小数字和
 * 例如:
 * {
 *      {1,  5, 7, 6, 8}
 *      {4,  7, 4, 4, 9}
 *      {10, 3, 2, 3, 2}
 * }
 * 最小长度22
 * */
public:
    MinPathSum(vector<vector<int>> An);
    int MinPathSumDP(vector<vector<int>> A);
    int MinPathSumByScrollingArray(vector<vector<int>> A);

private:
    vector<vector<int>> A;
};

MinPathSum::MinPathSum(vector<vector<int>> An):
A(An){
    A.resize(An.size());
    for (int i = 0; i < An.size(); ++i) {
        A[i].resize(An.size());
    }
}

int MinPathSum::MinPathSumDP(vector<vector<int>> A) {
    if(A.size() == 0){
        return 0;
    }
    vector<vector<int>> f;
    f.resize(A.size());
    for (int i = 0; i < A.size(); ++i) {
        f[i].resize(A.size());
    }
    f[0][0] = A[0][0]; //Init
    for (int i = 1; i < A.size(); ++i) {
        f[i][0] = f[i-1][0] + A[i][0];
    }
    for (int j = 1; j < A[0].size(); ++j) {
        f[0][j] = f[0][j-1] + A[0][j];
    }
    for (int i = 1; i < A.size(); ++i) {
        for (int j = 1; j < A[i].size(); ++j) {
            //f[i][j] = min{f[i][j-1]+A[i][j], f[i-1][j]+A[i][j]}
            f[i][j] = INT_MAX;
            f[i][j] = min(f[i][j-1]+A[i][j], f[i-1][j]+A[i][j]);
        }
    }
    return f[A.size()-1][A[0].size()-1];
}

//scrolling array
int MinPathSum::MinPathSumByScrollingArray(vector <vector<int>> A) {
    if(A.size() == 0){
        return 0;
    }
    vector<vector<int>> f;
    f.resize(2);
    for (int i = 0; i < f.size(); ++i) {
        f[i].resize(A[i].size());
    }
    //Initialization
    f[0][0] = A[0][0];
    int oldIndex = 0;
    int newIndex = 0;
    for (int j = 1; j < A[0].size(); ++j) {
        f[0][j] = f[0][j-1] + A[0][j];
    }

    for(int i = 1; i < A.size(); ++i){
        oldIndex = newIndex;
        newIndex = 1 - oldIndex;
        for(int j = 0; j < A[0].size(); ++j){
            if(j == 0) f[newIndex][j] = f[oldIndex][j]+A[i][j];
            else{
                f[newIndex][j] = min(f[oldIndex][j]+A[i][j],
                                     f[newIndex][j - 1]+A[i][j]);
            }
        }
    }
    return f[newIndex][f[newIndex].size()-1];
}
#endif //C__TEST01_MINPATHSUM_HPP

main.cpp

#include <iostream>
using namespace std;

#include "MinPathSum.hpp"

int main() {
    vector<vector<int>> A = {
            {1, 5, 7, 6, 8},
            {4, 7, 4, 4, 9},
            {10, 3, 2, 3, 2}
    };
    MinPathSum mps(A);
    //cout<<mps.MinPathSumDP(A)<<endl;
    cout<<mps.MinPathSumByScrollingArray(A)<<endl;
    return 0;
}

求解最短路径问题

上一篇:C# 理解FileInfo类的Open()方法


下一篇:C# 文件操作 常用的类