Alice and Bob are playing a simple game. They line up a row of n identical coins, all with the heads facing down onto the table and the tails upward.
For exactly mm times they select any k of the coins and toss them into the air, replacing each of them either heads-up or heads-down with the same possibility. Their purpose is to gain as many coins heads-up as they can.
Input
The input has several test cases and the first line contains the integer t(1≤t≤1000) which is the total number of cases.
For each case, a line contains three space-separated integers n, m1≤n,m≤100) and k (1≤k≤n).
Output
For each test case, output the expected number of coins heads-up which you could have at the end under the optimal strategy, as a real number with the precision of 33 digits.
样例输入
6
2 1 1
2 3 1
5 4 3
6 2 3
6 100 1
6 100 2
样例输出
0.500
1.250
3.479
3.000
5.500
5.000
题目来源
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <cmath>
#include <cstdlib>
#include <ctime>
using namespace std;
typedef long long ll;
int t,n,m,k;
const int N=;
double dp[N][N];
double c[N][N];//ll也会爆,一定要写成double
double p[N];
double ans;
void C()
{
c[][]=;
for(int i=;i<=;i++)
{
for(int j=;j<=i;j++)
{
if(j==||j==i) c[i][j]=;
else {
c[i][j]=c[i-][j-]+c[i-][j];
}
}
}
p[]=;
for(int i=;i<=;i++) p[i]=p[i-]/;
}
int main()
{
scanf("%d",&t);
C();
/*
for(int i=1;i<=100;i++)
{ printf("%dllll\n",i);
for(int j=0;j<=i;j++)
{
printf("%d%c",c[i][j],j==i?'\n':' ');
}
//c[33][j]就爆int 了。
}
*/
while(t--)
{
scanf("%d%d%d",&n,&m,&k);
memset(dp,,sizeof(dp));
//dp[i][j]: i次操作后,正面朝上的面数为j的概率
dp[][]=;//初始都是反面
for(int i=;i<m;i++)
{
for(int j=;j<=n;j++)
{
for(int l=;l<=k;l++)//取得k个里面l个正面朝上。
{ //反面的个数大于k,直接从反面的里面取k个
if((n-j)>=k) dp[i+][j+l]+=dp[i][j]*c[k][l]*p[k];//取出的K个硬币每个的结果概率都是1/2(正/反)
//反面的个数小于k,只能再从已经是正面的里面再取出k-(n-j)个。
else dp[i+][j-(k-(n-j))+l]+=dp[i][j]*c[k][l]*p[k];
}
}
}
ans=;
for(int i=;i<=n;i++)ans+=i*dp[m][i];//期望,别忘了*i
printf("%.3f\n",ans);
}
return ;
}