题目链接:https://www.jisuanke.com/contest/2870?view=challenges
题目大意:给出n个都正面朝下的硬币,操作m次,每次都选取k枚硬币抛到空中,求操作m次后,硬币向上的期望值。
思路:
1.期望跟概率还是有点不同的,期望要枚举出抛的所有的情况,然后求sigma(i * dp[][])
2.dp[i][j]表示进行i次操作后,有j枚硬币向上的概率。这样就可以求最后的硬币向上的期望了。
3.值得注意的是,预处理的组合数要开 double 型。
代码:
#include<stdio.h>
#include<string.h>
#define mem(a, b) memset(a, b, sizeof(a)) double C[][];//组合数
double P[]; //翻i个硬币的概率,因为正反都是 1 / 2,所以用一维数组表示
double dp[][]; //表示操作i次,有j枚硬币正面向上的概率
int n, m, k; int main()
{
//预处理组合数
C[][] = ;
for(int i = ; i <= ; i ++)
{
C[i][] = ;
for(int j = ; j <= i; j ++)
{
C[i][j] = C[i - ][j - ] + C[i - ][j];
}
}
//预处理i个硬币的概率
P[] = 1.0;
for(int i = ; i <= ; i ++)
P[i] = 0.5 * P[i - ];
int T;
scanf("%d", &T);
while(T --)
{
mem(dp, );
dp[][] = 1.0;
scanf("%d%d%d", &n, &m, &k);
for(int i = ; i < m; i ++)//枚举操作次数
{
for(int j = ; j <= n; j ++)//枚举硬币正面向上的个数
{
if(dp[i][j] == )
continue;
for(int q = ; q <= k; q ++)//枚举抛k枚硬币有多少枚硬币会朝上,枚举所有情况,才是求期望
{
if((n - j) >= k)
dp[i + ][j + q] += dp[i][j] * C[k][q] * P[k];
else
dp[i + ][j + q - (k - (n - j))] += dp[i][j] * C[k][q] * P[k];
}
}
}
double ans = 0.0;
for(int i = ; i <= n; i ++)
{
ans += dp[m][i] * i;
}
printf("%.3lf\n", ans);
}
return ;
}