python---使用递归实现谢尔宾斯基三角形及汉诺塔

渐入佳境。

# coding: utf-8

import turtle

'''
# =================turtle练手==
def draw_spiral(my_turtle, line_len):
    if line_len > 0:
        my_turtle.forward(line_len)
        my_turtle.right(70)
        draw_spiral(my_turtle, line_len-10)

my_tur = turtle.Turtle()
my_win = turtle.Screen()
draw_spiral(my_tur, 200)
my_win.exitonclick()

# =================分形树==
def tree(branch_len, my_turtle):
    if branch_len > 5:
        my_turtle.forward(branch_len)
        my_turtle.right(20)
        tree(branch_len-15, my_turtle)
        my_turtle.left(40)
        tree(branch_len - 15, my_turtle)
        my_turtle.right(20)
        my_turtle.backward(branch_len)

my_tur = turtle.Turtle()
my_win = turtle.Screen()

my_tur.left(90)
my_tur.up()
my_tur.backward(100)
my_tur.down()
my_tur.color('green')
tree(100, my_tur)
my_win.exitonclick()

# =================谢尔宾斯基三角形==
def draw_triangle(points, color, my_turtle):
    my_turtle.fillcolor(color)
    my_turtle.up()
    my_turtle.goto(points[0][0], points[0][1])
    my_turtle.down()
    my_turtle.begin_fill()
    my_turtle.goto(points[1][0], points[1][1])
    my_turtle.goto(points[2][0], points[2][1])
    my_turtle.goto(points[0][0], points[0][1])
    my_turtle.end_fill()

def get_mid(p1, p2):
    return (p1[0]+p2[0])/2, (p1[1]+p2[1])/2

def sierpinski(points, degree, my_turtle):
    color_map = ['blue', 'red', 'green', 'white',
                 'yellow', 'violet', 'orange']
    draw_triangle(points, color_map[degree], my_turtle)
    if degree > 0:
        sierpinski([points[0], get_mid(points[0], points[1]), get_mid(points[0], points[2])], degree-1, my_turtle)
        sierpinski([points[1], get_mid(points[0], points[1]), get_mid(points[1], points[2])], degree-1, my_turtle)
        sierpinski([points[2], get_mid(points[2], points[1]), get_mid(points[0], points[2])], degree-1, my_turtle)

my_tur = turtle.Turtle()
my_win = turtle.Screen()
my_points = [[-100, -50], [0, 100], [100, -50]]
sierpinski(my_points, 4, my_tur)
my_win.exitonclick()
'''

# =======================================汉诺塔==
def move_tower(height, from_pole, to_pole, with_pole):
    if height >= 1:
        move_tower(height-1, from_pole, with_pole, to_pole)
        move_disk(from_pole, to_pole, height)
        move_tower(height-1, with_pole, to_pole, from_pole)

def move_disk(fp, tp, disk_name):
    print('moving 碟子 {0} from  {1} to {2}'.format(disk_name, fp, tp))

high = 4

move_tower(high, '起始杆', '末尾杆', '中间杆')

  

python---使用递归实现谢尔宾斯基三角形及汉诺塔

python---使用递归实现谢尔宾斯基三角形及汉诺塔

C:\Users\Sahara\.virtualenvs\untitled\Scripts\python.exe D:/test/python_recursion.py
moving 碟子 1 from  起始杆 to 中间杆
moving 碟子 2 from  起始杆 to 末尾杆
moving 碟子 1 from  中间杆 to 末尾杆
moving 碟子 3 from  起始杆 to 中间杆
moving 碟子 1 from  末尾杆 to 起始杆
moving 碟子 2 from  末尾杆 to 中间杆
moving 碟子 1 from  起始杆 to 中间杆
moving 碟子 4 from  起始杆 to 末尾杆
moving 碟子 1 from  中间杆 to 末尾杆
moving 碟子 2 from  中间杆 to 起始杆
moving 碟子 1 from  末尾杆 to 起始杆
moving 碟子 3 from  中间杆 to 末尾杆
moving 碟子 1 from  起始杆 to 中间杆
moving 碟子 2 from  起始杆 to 末尾杆
moving 碟子 1 from  中间杆 to 末尾杆

Process finished with exit code 0

  

上一篇:大数据测试之Hadoop的基本概念


下一篇:unity中的透视投影矩阵