Link: https://leetcode.com/problems/combinations/
Constraint:
1 <= n <= 20
1 <= k <= n ==> k is always valid
Idea
Initialize an structure to keep track of whether a number has been visited or not
Initialize a list to keep track of the combination visited so far
Search:
If the size of combinatin list is equal to k, add it to final result list
For each number i in range [1, N]:
if i is not visited:
add the number to the combination list, mark this number as visited
repeat this earch on other numbers recursively, with the starting index from (i + 1)
remove the number i from the combination, mark it in the as unvisited
Code
class Solution {
public List<List<Integer>> combine(int n, int k) {
List<List<Integer>> results = new ArrayList<>();
search(n, k, 1, new boolean[n + 1], new ArrayList<Integer>(), results);
return results;
}
private void search(int n, int k, int start, boolean[] visited, List<Integer> combination, List<List<Integer>> results) {
if (combination.size() == k) {
results.add(new ArrayList<>(combination));
return;
}
for (int i = start; i <= n; i++) {
if (!visited[i]) {
visited[i] = true;
combination.add(i);
search(n, k, i + 1, visited, combination, results);
combination.remove(combination.size() - 1);
visited[i] = false;
}
}
}
}
- Time: It would be equal to C(n, k), n choose k.
- Space:
Slightly better version without the need to use boolean array:
class Solution {
public List<List<Integer>> combine(int n, int k) {
List<List<Integer>> results = new ArrayList<>();
search(n, k, 1, new ArrayList<Integer>(), results);
return results;
}
private void search(int n, int k, int index, List<Integer> comb, List<List<Integer>> results) {
if (comb.size() == k) {
results.add(new ArrayList<Integer>(comb));
return;
}
for (int i = index; i <= n; i++) {
comb.add(i);
search(n, k, i + 1, comb, results);
comb.remove(comb.size() - 1);
}
}
}