给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
示例 2:
输入:nums = []
输出:[]
示例 3:
输入:nums = [0]
输出:[]
一开始看到这个题的时候,思路是直接三个循环开始干,但是这种暴力解法的时间复杂度是n的三次方,肯定会超时,所以选择用排序+双循环+右指针的做法。
代码如下
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
int n=nums.size();
sort(nums.begin(),nums.end());
int first=0,second=0,third=0;
vector<vector<int>> ans;
for(first=0;first<n;first++)
{
if(first>0 && nums[first]==nums[first-1])
{
continue;
}
int target = -nums[first];
int third = n-1;
for(second=first+1;second<n;second++)
{
if(second>first+1 && nums[second]==nums[second-1])
{
continue;
}
while(second<third && nums[second]+nums[third]>target)
{
third--;
}
if(third == second)
{
break;
}
if(nums[second]+nums[third]==target)
{
ans.push_back({nums[first],nums[second],nums[third]});
}
}
}
return ans;
}
};
思路是参考了leetcode的官方解决方案:
题目中要求找到所有「不重复」且和为 000 的三元组,这个「不重复」的要求使得我们无法简单地使用三重循环枚举所有的三元组。这是因为在最坏的情况下,数组中的元素全部为 000,即
[0, 0, 0, 0, 0, …, 0, 0, 0]
任意一个三元组的和都为 0。如果我们直接使用三重循环枚举三元组,会得到 O(N3)个满足题目要求的三元组(其中 N 是数组的长度)时间复杂度至少为 O(N3)。在这之后,我们还需要使用哈希表进行去重操作,得到不包含重复三元组的最终答案,又消耗了大量的空间。这个做法的时间复杂度和空间复杂度都很高,因此我们要换一种思路来考虑这个问题。
「不重复」的本质是什么?我们保持三重循环的大框架不变,只需要保证:
第二重循环枚举到的元素不小于当前第一重循环枚举到的元素;
第三重循环枚举到的元素不小于当前第二重循环枚举到的元素。
也就是说,我们枚举的三元组 (a,b,c) 满足 a≤b≤c,保证了只有 (a,b,c) 这个顺序会被枚举到,而 (b,a,c)、(c,b,a) 等等这些不会,这样就减少了重复。要实现这一点,我们可以将数组中的元素从小到大进行排序,随后使用普通的三重循环就可以满足上面的要求。
同时,对于每一重循环而言,相邻两次枚举的元素不能相同,否则也会造成重复。举个例子,如果排完序的数组为
[0, 1, 2, 2, 2, 3]
^ ^ ^
我们使用三重循环枚举到的第一个三元组为 (0,1,2),如果第三重循环继续枚举下一个元素,那么仍然是三元组(0,1,2),产生了重复。因此我们需要将第三重循环「跳到」下一个不相同的元素,即数组中的最后一个元素 3,枚举三元组 (0,1,3)。
下面给出了改进的方法的伪代码实现:
nums.sort()
for first = 0 .. n-1
// 只有和上一次枚举的元素不相同,我们才会进行枚举
if first == 0 or nums[first] != nums[first-1] then
for second = first+1 .. n-1
if second == first+1 or nums[second] != nums[second-1] then
for third = second+1 .. n-1
if third == second+1 or nums[third] != nums[third-1] then
// 判断是否有 a+b+c==0
check(first, second, third)
这种方法的时间复杂度仍然为 O(N3),毕竟我们还是没有跳出三重循环的大框架。然而它是很容易继续优化的,可以发现,如果我们固定了前两重循环枚举到的元素 a 和 b,那么只有唯一的 c 满足 a+b+c=0。当第二重循环往后枚举一个元素 b′ 时,由于 b′>b,那么满足 a+b′+c′=0 的 c′ 一定有 c′<c,即 c′ 在数组中一定出现在c 的左侧。也就是说,我们可以从小到大枚举 b,同时从大到小枚举c,即第二重循环和第三重循环实际上是并列的关系。
有了这样的发现,我们就可以保持第二重循环不变,而将第三重循环变成一个从数组最右端开始向左移动的指针,从而得到下面的伪代码:
nums.sort()
for first = 0 .. n-1
if first == 0 or nums[first] != nums[first-1] then
// 第三重循环对应的指针
third = n-1
for second = first+1 .. n-1
if second == first+1 or nums[second] != nums[second-1] then
// 向左移动指针,直到 a+b+c 不大于 0
while nums[first]+nums[second]+nums[third] > 0
third = third-1
// 判断是否有 a+b+c==0
check(first, second, third)
这个方法就是我们常说的「双指针」,当我们需要枚举数组中的两个元素时,如果我们发现随着第一个元素的递增,第二个元素是递减的,那么就可以使用双指针的方法,将枚举的时间复杂度从 O(N2) 减少至 O(N)。为什么是 O(N) 呢?这是因为在枚举的过程每一步中,「左指针」会向右移动一个位置(也就是题目中的 b),而「右指针」会向左移动若干个位置,这个与数组的元素有关,但我们知道它一共会移动的位置数为 O(N),均摊下来,每次也向左移动一个位置,因此时间复杂度为 O(N)。
注意到我们的伪代码中还有第一重循环,时间复杂度为 O(N),因此枚举的总时间复杂度为 O(N2)。由于排序的时间复杂度为 O(NlogN),在渐进意义下小于前者,因此算法的总时间复杂度为 O(N2)。