在一个国家仅有1分,2分,3分硬币,将钱N兑换成硬币有很多种兑法。请你编程序计算出共有多少种兑法。
Input每行只有一个正整数N,N小于32768。
Output对应每个输入,输出兑换方法数。
Sample Input
2934
12553
Sample Output
718831
13137761 题解:首先都会想到循环,但是只要控制不好都会超时,我的想法是,将循环次数控制到最小;
首先大循环以三分为基础,剩下就是分配给二分和一分,因为有一分,所以肯定可以分完,
只要求出两分的有几种就可以,剩下的一分肯定能补齐;代码:
#include<iostream>
#include<cmath>
#include<cstring>
#include<string>
#include<cstdio>
using namespace std;
const int MS = /; int main(){ int n;
while(cin>>n){
int cnt=;
int MA=n/;
for(int i=;i<=MA;i++){ int MZ=(n-i*); cnt+=(MZ/+); } cout<<cnt<<endl;
} }
#include<iostream>#include<cmath>#include<cstring>#include<string>#include<cstdio>usingnamespacestd; constint MS = 32768/2; int main(){ int n; while(cin>>n){ int cnt=0; int MA=n/3; for(int i=0;i<=MA;i++){ int MZ=(n-i*3); cnt+=(MZ/2+1); } cout<<cnt<<endl; } }