题目描述
We have an array A of non-negative integers.
For every (contiguous) subarray B = [A[i], A[i+1], …, A[j]] (with i <= j), we take the bitwise OR of all the elements in B, obtaining a result A[i] | A[i+1] | … | A[j].
Return the number of possible results. (Results that occur more than once are only counted once in the final answer.)
Example 1:
Input: [0]
Output: 1
Explanation:
There is only one possible result: 0.
Example 2:
Input: [1,1,2]
Output: 3
Explanation:
The possible subarrays are [1], [1], [2], [1, 1], [1, 2], [1, 1, 2].
These yield the results 1, 1, 2, 1, 3, 3.
There are 3 unique values, so the answer is 3.
Example 3:
Input: [1,2,4]
Output: 6
Explanation:
The possible results are 1, 2, 3, 4, 6, and 7.
Note:
1 <= A.length <= 50000
0 <= A[i] <= 10^9
思路
每增加一个数字,就是在之前的所有序列中,新增一个数字,以及该数字和之前所有序列的 或| 值。
其实也不难想到,为啥我就想不到呢。。。。
三天没做题,又开始没思路了。。。嘤。
代码
class Solution {
public:
int subarrayBitwiseORs(vector<int>& A) {
unordered_set<int> cur, res, tmp;
for (const auto& num1 : A) {
tmp.clear();
tmp = {num1};
for (const auto& num2 : cur) {
tmp.insert(num1 | num2);
}
cur = tmp;
res.insert(cur.begin(), cur.end());
}
return res.size();
}
};
涛涛酱
发布了260 篇原创文章 · 获赞 10 · 访问量 1万+
私信
关注