【转载】STA 4273H Winter 2015 - Lectures

 

STA 4273H Winter 2015 - Lectures

Video Archive here

Lecture Schedule

  • Lecture 1 -- Machine Learning:
    Introduction to Machine Learning, Linear Models for Regression (notes [pdf], [Video] ) 
    Reading: Bishop, Chapter 1: sec. 1.1 - 1.5. and Chapter 3: sec. 1.1 - 1.3. 
    Optional: Bishop, Chapter 2: Backgorund material; 
    Hastie, Tibshirani, Friedman, Chapters 2 and 3.

     

  • Lecture 2 -- Bayesian Framework:
    Bayesian Linear Regression, Evidence Maximization. Linear Models for Classification. (notes [pdf], [Video] ) 
    Reading: Bishop, Chapter 3: sec. 3.3 - 3.5. Chapter 4. 
    Optional: Radford Neal‘s NIPS tutorial on Bayesian Methods for Machine Learning: [pdf]). Also see Max Welling‘s notes on Fisher Linear Discriminant Analysis [pdf ]

 


Home | Lecture Schedule/Notes | Assignments/Project | Computing | ]

STA 4273H (Winter 2015): Large Scale Machine Learning || http://www.utstat.toronto.edu/~rsalakhu/STA4273_2015/

【转载】STA 4273H Winter 2015 - Lectures

上一篇:linux与windows共享剪贴板(clipboard)


下一篇:理解C#系列 / 核心C# / 名称空间