Given a binary tree containing digits from 0-9
only, each root-to-leaf path could represent a number.
An example is the root-to-leaf path 1->2->3
which represents the number 123
.
Find the total sum of all root-to-leaf numbers.
Note: A leaf is a node with no children.
Example:
Input: [1,2,3]
1
/ \
2 3
Output: 25
Explanation:
The root-to-leaf path1->2
represents the number12
.
The root-to-leaf path1->3
represents the number13
.
Therefore, sum = 12 + 13 =25
.
Example 2:
Input: [4,9,0,5,1]
4
/ \
9 0
/ \
5 1
Output: 1026
Explanation:
The root-to-leaf path4->9->5
represents the number 495.
The root-to-leaf path4->9->1
represents the number 491.
The root-to-leaf path4->0
represents the number 40.
Therefore, sum = 495 + 491 + 40 =1026
.
这道求根到叶节点数字之和的题跟之前的求 Path Sum 很类似,都是利用DFS递归来解,这道题由于不是单纯的把各个节点的数字相加,而是每遇到一个新的子结点的数字,要把父结点的数字扩大10倍之后再相加。如果遍历到叶结点了,就将当前的累加结果sum返回。如果不是,则对其左右子结点分别调用递归函数,将两个结果相加返回即可,参见代码如下:
解法一:
class Solution {
public:
int sumNumbers(TreeNode* root) {
return sumNumbersDFS(root, );
}
int sumNumbersDFS(TreeNode* root, int sum) {
if (!root) return ;
sum = sum * + root->val;
if (!root->left && !root->right) return sum;
return sumNumbersDFS(root->left, sum) + sumNumbersDFS(root->right, sum);
}
};
我们也可以采用迭代的写法,这里用的是先序遍历的迭代写法,使用栈来辅助遍历,首先将根结点压入栈,然后进行while循环,取出栈顶元素,如果是叶结点,那么将其值加入结果res。如果其右子结点存在,那么其结点值加上当前结点值的10倍,再将右子结点压入栈。同理,若左子结点存在,那么其结点值加上当前结点值的10倍,再将左子结点压入栈,是不是跟之前的 Path Sum 极其类似呢,参见代码如下:
解法二:
class Solution {
public:
int sumNumbers(TreeNode* root) {
if (!root) return ;
int res = ;
stack<TreeNode*> st{{root}};
while (!st.empty()) {
TreeNode *t = st.top(); st.pop();
if (!t->left && !t->right) {
res += t->val;
}
if (t->right) {
t->right->val += t->val * ;
st.push(t->right);
}
if (t->left) {
t->left->val += t->val * ;
st.push(t->left);
}
}
return res;
}
};
类似题目:
参考资料: