(1)课程简介-CS231A:Computer Vision, From 3D Reconstruction to Recognition

 

(1)课程简介-CS231A:Computer Vision, From 3D Reconstruction to Recognition

斯坦福大学-源地址: CS231A: Computer Vision, From 3D Reconstruction to Recognition

CS231AGitHub笔记:https://github.com/kenjihata/cs231a-notes

代码和笔记:https://github.com/chizhang529/cs231a

作业答案:https://github.com/zyxrrr/cs231a

CSDN笔记博客:https://blog.csdn.net/qq_40166295/article/details/104031016

 

目录

1. 课程简介

2. 课程要求

Prerequisites

先决条件

3. 课程总览


1. 课程简介

An introduction to the concepts and applications in computer vision. Topics include: cameras and projection models, low-level image processing methods such as filtering and edge detection; mid-level vision topics such as segmentation and clustering; shape reconstruction from stereo, as well as high-level vision tasks such as object recognition, scene recognition, face detection and human motion categorization. Prerequisites: linear algebra, basic probability and statistics

计算机视觉的概念及应用介绍。主题包括: 相机与投影模型、低层图像处理方法如过滤与边缘检测、中层视觉主题如分割与聚类、立体形状重建,以及高层视觉任务如目标识别、场景识别、人脸检测与人体运动分类。先修条件: 线性代数,基本概率统计。

(1)课程简介-CS231A:Computer Vision, From 3D Reconstruction to Recognition

(1)课程简介-CS231A:Computer Vision, From 3D Reconstruction to Recognition

2. 课程要求

Prerequisites

先决条件

  • Proficiency in Python, high-level familiarity in C/C++ 熟练掌握 Python 语言,高度熟悉 c/c + +
    All class assignments will be in Python (and use numpy) (CS231N provides a very nice tutorial 所有的类分配都将使用 Python (并使用 numpy)(CS231N 提供了一个非常好的教程here 这里 for those who aren't as familiar with Python), but some of the deep learning libraries that you may want to use for your projects are written in C++. If you have a lot of programming experience but in a different language (e.g. C/C++/Matlab/Javascript) you will probably be fine. 对于那些不太熟悉 Python 的人) ,但是一些深度学习库是用 c + + 编写的,你可能想用它们来完成你的项目。如果你有丰富的编程经验,但使用不同的语言(例如 c/c + +/Matlab/Javascript) ,你可能会做得很好
  • College Calculus, Linear Algebra 大学微积分,线性代数 (e.g. MATH 19 or 41, MATH 51) (例如,MATH 19或41,MATH 51)
    You should be comfortable taking derivatives and understanding matrix vector operations and notation. 你应该可以很轻松地计算导数,理解矩阵向量运算和符号
  • Basic Probability and Statistics 基本概率统计 (e.g. CS 109 or other stats course) (例如 cs109或其他统计学课程)
    You should know basics of probabilities, gaussian distributions, mean, standard deviation, etc. 你应该知道概率的基本知识,高斯分布,平均值,标准差,等等
  • Equivalent knowledge of CS131, CS221, or CS229. 具备 CS131、 CS221或 CS229的相关知识
    You should be familiar with basic machine learning or computer vision techniques. 你应该熟悉基本的机器学习或计算机视觉技术

3. 课程总览

Lecture Date Title Download Reading Instructor
1 1/08/2018 Introduction [slides]   Silvio Savarese
  1/08/2018 Problem Set 0 Released [pdf] [code]    
2 1/10/2018 Camera Models [slides] [FP] Ch.1
[HZ] Ch.6
Silvio Savarese
  1/10/2018 Problem Set 1 Released [pdf] [code]    
TA 1 1/12/2018 Python Introduction and Linear Algebra Review [slides] Any linear algebra textbook
[HZ] ch.2,4
Kuan Fang
  1/15/2018 Martin Luther King Jr. Day (No class)      
3 1/17/2018 Camera Models II and Camera Calibration [slides] [FP] Ch.1
[HZ] Ch.7
Silvio Savarese
  1/17/2018 Problem Set 0 Due : 11:59PM      
TA 2 1/19/2018 Problem Set 1 Review [slides]   Danfei Xu
4 1/22/2018 Single View Metrology [slides] [HZ] Ch.2,3,8
[Hoiem & Savarese]
Ch.2
Silvio Savarese
5 1/24/2018 Epipolar Geometry [slides] [HZ] Ch.4,9,11
[FP] Ch.7,8
Silvio Savarese
  1/26/2018 Problem Set 2 Released [pdf][code]    
  1/26/2018 Problem Set 1 Due: 11:59PM      
TA 3 1/26/2018 Course Project Outline [slides]   Amir Sadeghian
6 1/29/2018 Stereo Systems [slides] [HZ] Ch.9, 18
[FP] Ch.7,8
Silvio Savarese
7 1/31/2018 Structure from Motion [slides] [HZ] Ch.10,18,19
[FP] Ch.13
[Szelisky] Ch.7
Silvio Savarese
  2/01/2018 Project Proposal Due: 11:59PM      
TA 4 2/02/2018 Problem Set 2 Review [slides]   Fei Xia
8 2/05/2018 Fitting and Matching [slides] [HZ] Ch.4,11
[FP] Ch.10
Animesh Garg
9 2/07/2018 Detectors and Descriptors [slides]   Marynel Vazquez
TA 5 2/09/2018 Computer Vision Libraries [slides]   Amir Sadeghian
  2/09/2018 Problem Set 2 Due: 11:59PM      
  2/09/2018 Problem Set 3 Released [pdf] [code]    
10 2/12/2018 Active Stereo & Volumetric Stereo [slides] [Szelisky] Ch.11
[Savarese et al.]
[Seitz et al.]
Silvio Savarese
11 2/14/2018 Introduction to Recognition : Image Classification [slides] [FP] Ch.6,16
[Hosang et. al.]
Silvio Saverese
TA 6 2/16/2018 Problem Set 3 Review [slides]   Kuan Fang
  2/19/2018 Presidents' Day (No class)      
12 2/21/2018 Image Classification & 2D Object Detection [slides]   Silvio Savarese
TA 7 2/23/2018 Introduction to Convolutional Neural Networks [slides]   Julian Gao
13 2/26/2018 2D Scene Understanding [slides]   Christopher B. Choy
  2/26/2018 Project Milestone Due: 11:59PM      
  2/28/2018 Problem Set 3 Due: 11:59PM      
14 2/28/2018 3D Object Detection [slides]   Silvio Savarese
  3/01/2018 Problem Set 4 Released [pdf][code]    
TA 8 3/02/2018 Midterm Review [slides]   Fei Xia
  3/05/2018 Midterm [midterm 2017][midterm 2017 with solution] The midterm is open book and open note.
No electronics will be allowed.
The midterm will be held in class (Skilling Auditorium)
 
15 3/07/2018 Learning Visual Representations by Neural Networks [slides]   Amir Zamir
TA 9 3/09/2018 Problem Set 4 Review [slides]   Danfei Xu
16 3/12/2018 3D Scene Understanding [slides]   Silvio Savarese
  3/14/2018 No class due to ECCV deadline      
TA 10 3/16/2018 Final Project Presentation Guidelines [slides]   Kuan Fang
  3/17/2018 Problem Set 4 Due: 11:59PM      
  3/19/2018 Project Presentations   12:30pm - 2:30pm, Room 1: Oshman 125 map Room 2: 450 Serra Mall, 300-300 map  
  3/22/2018 Project Final Report Due: 11:59PM      
上一篇:NoSQL和关系数据库的操作比较


下一篇:设计模式之建造者模式