import os
import cv2
from tqdm import tqdm
import json
def convert_to_cocodetection(dir, output_dir):
train_dir = os.path.join(dir, "VisDrone2019-DET-train")
val_dir = os.path.join(dir, "VisDrone2019-DET-val")
train_annotations = os.path.join(train_dir, "annotations")
val_annotations = os.path.join(val_dir, "annotations")
train_images = os.path.join(train_dir, "images")
val_images = os.path.join(val_dir, "images")
id_num = 0
categories = [
{"id": 0, "name": "ignored region"},
{"id": 1, "name": "pedestrian"},
{"id": 2, "name": "people"},
{"id": 3, "name": "bicycle"},
{"id": 4, "name": "car"},
{"id": 5, "name": "van"},
{"id": 6, "name": "truck"},
{"id": 7, "name": "tricycle"},
{"id": 8, "name": "awning-tricycle"},
{"id": 9, "name": "bus"},
{"id": 10, "name": "motor"},
{"id": 11, "name": "others"}
]
for mode in ["train", "val"]:
images = []
annotations = []
print(f"start loading {mode} data...")
if mode == "train":
set = os.listdir(train_annotations)
annotations_path = train_annotations
images_path = train_images
else:
set = os.listdir(val_annotations)
annotations_path = val_annotations
images_path = val_images
for i in tqdm(set):
f = open(annotations_path + "/" + i, "r")
name = i.replace(".txt", "")
image = {}
height, width = cv2.imread(images_path + "/" + name + ".jpg").shape[:2]
file_name = name + ".jpg"
image["file_name"] = file_name
image["height"] = height
image["width"] = width
image["id"] = name
images.append(image)
for line in f.readlines():
annotation = {}
line = line.replace("\n", "")
if line.endswith(","): # filter data
line = line.rstrip(",")
line_list = [int(i) for i in line.split(",")]
# import pdb; pdb.set_trace()
bbox_xywh = [line_list[0], line_list[1], line_list[2], line_list[3]]
annotation["image_id"] = name
# annotation["score"] = line_list[4]
annotation["bbox"] = bbox_xywh
annotation["category_id"] = int(line_list[5])
annotation["id"] = id_num
annotation["iscrowd"] = 0
annotation["segmentation"] = []
annotation["area"] = bbox_xywh[2] * bbox_xywh[3]
id_num += 1
annotations.append(annotation)
dataset_dict = {}
dataset_dict["images"] = images
dataset_dict["annotations"] = annotations
dataset_dict["categories"] = categories
json_str = json.dumps(dataset_dict)
with open(f'{output_dir}/VisDrone2019-DET_{mode}_coco.json', 'w') as json_file:
json_file.write(json_str)
print("json file write done...")
def get_test_namelist(dir, out_dir):
full_path = out_dir + "/" + "test.txt"
file = open(full_path, 'w')
for name in tqdm(os.listdir(dir)):
name = name.replace(".txt", "")
file.write(name + "\n")
file.close()
return None
def centerxywh_to_xyxy(boxes):
"""
args:
boxes:list of center_x,center_y,width,height,
return:
boxes:list of x,y,x,y,cooresponding to top left and bottom right
"""
x_top_left = boxes[0] - boxes[2] / 2
y_top_left = boxes[1] - boxes[3] / 2
x_bottom_right = boxes[0] + boxes[2] / 2
y_bottom_right = boxes[1] + boxes[3] / 2
return [x_top_left, y_top_left, x_bottom_right, y_bottom_right]
def centerxywh_to_topleftxywh(boxes):
"""
args:
boxes:list of center_x,center_y,width,height,
return:
boxes:list of x,y,x,y,cooresponding to top left and bottom right
"""
x_top_left = boxes[0] - boxes[2] / 2
y_top_left = boxes[1] - boxes[3] / 2
width = boxes[2]
height = boxes[3]
return [x_top_left, y_top_left, width, height]
def clamp(coord, width, height):
if coord[0] < 0:
coord[0] = 0
if coord[1] < 0:
coord[1] = 0
if coord[2] > width:
coord[2] = width
if coord[3] > height:
coord[3] = height
return coord
if __name__ == '__main__':
convert_to_cocodetection(r"",r"")