Wooden Sticks
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 26095 Accepted Submission(s): 10554
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2).
有若干组木棍:木棍的长度为I 重为W 现在用机器加工这些木头: 规则如下:
1;加工第一组木头会花去1分钟
2:设加工的下一组木头的长度为 I' 重量为W‘ 如果 I=<I' 且 W=<W' ,则加工这根木头不需要花费时间。
问,所花费的最少时间是多少?
可以先按长度和重量从小到大排序,长度相同按重量从小到大排
每次从最前面没选过的开始,计算有多少种递增子序列,加一点技巧会更清楚,具体看代码中间的while部分
#include<bits/stdc++.h>
using namespace std;
struct node
{
int l,w,flag;
}a[];
void init()
{
for(int i=;i<;i++)
{
a[i].l=;a[i].w=;a[i].flag=;
}
}
bool cmp(node x,node y)
{
if(x.l==y.l)return x.w<y.w;
else return x.l<y.l;
}
int main()
{
int t;
while(~scanf("%d",&t))
{
while(t--)
{
init();
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
{
scanf("%d %d",&a[i].l,&a[i].w);
}
sort(a,a+n,cmp);
// for(int i=0;i<n;i++)
// {
// printf("%d %d\n",a[i].l,a[i].w);
// }
int ans=,j=;
while(j<n)//判断有没有全部选完 ,核心部分
{
ans++;
int tempx=,tempy=;
for(int i=;i<n;i++)
{
if(a[i].l>=tempx&&a[i].w>=tempy&&a[i].flag)//flag==1表示没有被选过
{
a[i].flag=;//选过的标记,下次就不选了
j++;
tempx=a[i].l;
tempy=a[i].w;
}
}
}
printf("%d\n",ans);
}
}
return ;
}