Python Face Detect Offline

python版本 3.7.0 
Python Face Detect Offline

1、 安装 cmake

pip install cmake 
Python Face Detect Offline

2、安装 boost

pip install boost 
Python Face Detect Offline

3、安装 dlib

pip install dlib 
Python Face Detect Offline

4、安装 face_recognition

pip install face_recognition 
Python Face Detect Offline

5、验证

face_recognition 本地模型路径 要识别图片路径 
输出:文件名 识别的人名 
Python Face Detect Offline

注意:文件名以人名命名 
Python Face Detect Offline

6、寻找人脸位置

face_detection “路径” 
输出:人脸像素坐标 
Python Face Detect Offline

7、调整灵敏度

face_recognition –tolerance 灵敏度 本地模型路径 要识别图片路径 
注:默认0.6,识别度越低识别难度越高 
Python Face Detect Offline

8、计算每次面部距离

face_recognition –show-distance true 本地模型路径 要识别图片路径 
Python Face Detect Offline

9、只是想知道每张照片中人物的姓名,却不关心文件名,可以这样做:

face_recognition 本地模型路径 要识别图片路径 | cut -d ‘,’ -f2

Python Face Detect Offline

10、加速识别

face_recognition –cpus 使用内核数 本地模型路径 要识别图片路径 
使用四核识别: 
face_recognition –cpus 4 本地模型路径 要识别图片路径 
Python Face Detect Offline 
使用全部内核识别: 
face_recognition –cpus -1 本地模型路径 要识别图片路径

Python Face Detect Offline

11、自动查找图像中的所有面孔

import face_recognition

image = face_recognition.load_image_file(“吴京.jpg”) 
face_locations = face_recognition.face_locations(image)

import face_recognition
import cv2
import numpy as np # This is a demo of running face recognition on live video from your webcam. It's a little more complicated than the
# other example, but it includes some basic performance tweaks to make things run a lot faster:
# 1. Process each video frame at 1/4 resolution (though still display it at full resolution)
# 2. Only detect faces in every other frame of video. # PLEASE NOTE: This example requires OpenCV (the `cv2` library) to be installed only to read from your webcam.
# OpenCV is *not* required to use the face_recognition library. It's only required if you want to run this
# specific demo. If you have trouble installing it, try any of the other demos that don't require it instead. # Get a reference to webcam #0 (the default one)
video_capture = cv2.VideoCapture(0) # Load a sample picture and learn how to recognize it.
obama_image = face_recognition.load_image_file("obama.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0] # Load a second sample picture and learn how to recognize it.
biden_image = face_recognition.load_image_file("biden.jpg")
biden_face_encoding = face_recognition.face_encodings(biden_image)[0] # Create arrays of known face encodings and their names
known_face_encodings = [
obama_face_encoding,
biden_face_encoding
]
known_face_names = [
"Barack Obama",
"Joe Biden"
] # Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True while True:
# Grab a single frame of video
ret, frame = video_capture.read() # Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) # Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1] # Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown" # # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index] # Or instead, use the known face with the smallest distance to the new face
face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame # Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4 # Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) # Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) # Display the resulting image
cv2.imshow('Video', frame) # Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break # Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()  

彩蛋

import cv2
import threading
import face_recognition
import numpy as np
import os class camThread(threading.Thread):
def __init__(self, previewName, camID):
threading.Thread.__init__(self)
self.previewName = previewName
self.camID = camID
def run(self):
print("Starting " + self.previewName)
camPreview(self.previewName, self.camID) def camPreview(previewName, camID):
cv2.namedWindow(previewName)
video_capture = cv2.VideoCapture(camID)
if video_capture.isOpened():
rval, frame = video_capture.read()
else:
rval = False known_face_encodings = []
known_face_names = [] imagelist = os.listdir('./face/')
for imagename in imagelist:
image = face_recognition.load_image_file("./face/"+imagename)
face_encoding = face_recognition.face_encodings(image)[0]
known_face_encodings.append(face_encoding)
subname=imagename.split('.')[0]
known_face_names.append(subname)
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True while rval:
#cv2.imshow(previewName, frame)
rval, frame = video_capture.read()
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
rgb_small_frame = small_frame[:, :, ::-1]
if process_this_frame:
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = []
for face_encoding in face_encodings:
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown" face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index] face_names.append(name) process_this_frame = not process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) cv2.imshow(previewName, frame) if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.destroyWindow(previewName) thread1 = camThread("Camera 1", 0)
thread2 = camThread("Camera 2", 1) thread1.start()
thread2.start()
上一篇:理解sort()函数的排序原理


下一篇:解决远程连接mysql很慢的方法