URAL 1132 Square Root(二次剩余定理)题解

题意:

求\(x^2 \equiv a \mod p\) 的所有整数解

思路:

二次剩余定理求解。

参考:

二次剩余Cipolla's algorithm学习笔记

板子:

//二次剩余,p是奇质数
ll ppow(ll a, ll b, ll mod){
ll ret = 1;
a = a % mod;
while(b){
if(b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
struct TT{
ll p, d;
};
ll w;
TT mul_er(TT a, TT b, ll mod){
TT ans;
ans.p = (a.p * b.p % mod + a.d * b.d % mod * w % mod) % mod;
ans.d = (a.p * b.d % mod + a.d * b.p % mod) % mod;
return ans;
}
TT power(TT a, ll b, ll mod){
TT ret;
ret.p = 1, ret.d = 0;
while(b){
if(b & 1) ret = mul_er(ret, a, mod);
a = mul_er(a, a, mod);
b >>= 1;
}
return ret;
}
ll legendre(ll a, ll p){
return ppow(a, (p - 1) >> 1, p);
}
ll modulo(ll a, ll mod){
a %= mod;
if(a < 0) a += mod;
return a;
}
ll solve(ll n, ll p){ //x^2 = n mod p
if(n == 0) return 0;
if(n == 1) return 1;
if(p == 2) return 1;
if(legendre(n, p) + 1 == p) return -1; //无解
ll a = -1, t;
while(true){
a = rand() % p;
t = a * a - n;
w = modulo(t, p);
if(legendre(w, p) + 1 == p) break;
}
TT temp;
temp.p = a;
temp.d = 1;
TT ans = power(temp, (p + 1) >> 1, p);
return ans.p;
}

代码:

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<ctime>
#include<cmath>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<sstream>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 5e4 + 5;
const int INF = 0x3f3f3f3f;
const ull seed = 131;
const ll MOD = 1e9 + 7;
using namespace std; //二次剩余
ll ppow(ll a, ll b, ll mod){
ll ret = 1;
a = a % mod;
while(b){
if(b & 1) ret = ret * a % mod;
a = a * a % mod;
b >>= 1;
}
return ret;
}
struct TT{
ll p, d;
};
ll w;
TT mul_er(TT a, TT b, ll mod){
TT ans;
ans.p = (a.p * b.p % mod + a.d * b.d % mod * w % mod) % mod;
ans.d = (a.p * b.d % mod + a.d * b.p % mod) % mod;
return ans;
}
TT power(TT a, ll b, ll mod){
TT ret;
ret.p = 1, ret.d = 0;
while(b){
if(b & 1) ret = mul_er(ret, a, mod);
a = mul_er(a, a, mod);
b >>= 1;
}
return ret;
}
ll legendre(ll a, ll p){
return ppow(a, (p - 1) >> 1, p);
}
ll modulo(ll a, ll mod){
a %= mod;
if(a < 0) a += mod;
return a;
}
ll solve(ll n, ll p){ //x^2 = n mod p
if(n == 0) return 0;
if(n == 1) return 1;
if(p == 2) return 1;
if(legendre(n, p) + 1 == p) return -1; //无解
ll a = -1, t;
while(true){
a = rand() % p;
t = a * a - n;
w = modulo(t, p);
if(legendre(w, p) + 1 == p) break;
}
TT temp;
temp.p = a;
temp.d = 1;
TT ans = power(temp, (p + 1) >> 1, p);
return ans.p;
} int main(){
int T;
scanf("%d", &T);
while(T--){
ll a, n;
scanf("%lld%lld", &a, &n);
ll ans1 = solve(a, n), ans2;
if(ans1 == -1){
printf("No root\n");
continue;
}
ans2 = n - ans1;
if(ans1 > ans2) swap(ans1, ans2);
if(ans1 == ans2) printf("%lld\n", ans1);
else printf("%lld %lld\n", ans1, ans2);
}
return 0;
}
上一篇:vuesheng生命周期


下一篇:URAL 1001 Reverse Root(水题?)